Недостатком таких систем являются повышенные затраты на тепловую изоляцию параллельных воздуховодов, подводимых к каждому обслуживаемому помещению.
Двухканальные системы так же как и одноканальные, могут быть прямоточными и рециркуляционными.
Кондиционирование воздуха, согласно СНиП 2.04.05-91*, по степени обеспечения метерологических условий подразделяются на три класса:
Первый класс – обеспечивает требуемые для технологического процесса параметры в соответствии с нормативными документами.
Второй класс – обеспечивает оптимальные санитарно-гигиенические нормы или требуемые технологические нормы.
Третий класс – обеспечивает допустимые нормы, если они не могут быть обеспечены вентиляцией в теплый период года без применения искусственного охлаждения воздуха.
По давлению, создаваемому вентиляторами центральных кондиционеров, СКВ подразделяются на системы низкого давления (до 100 кг/м2), среднего давления (от 100 до 300 кг/м2) и высокого давления (выше 300 кг/м2).
3.2 КЛАССИФИКАЦИЯ СИСТЕМ ВЕНТИЛЯЦИИ
Вентиляцией называется совокупность мероприятий и устройств, используемых при организации воздухообмена для обеспечения заданного состояния воздушной среды в помещениях и на рабочих местах в соответствии со СНиП (Строительными нормами).
Системы вентиляции обеспечивают поддержание допустимых метеорологических параметров в помещениях различного назначения.
При всем многообразии систем вентиляции, обусловленном назначении помещений, характером технологического процесса, видом вредных выделений и т.п., их можно классифицировать по следующим характерным признакам:
1. По способу создания давления для перемещения воздуха: с естественным и искусственным (механическим) побуждением.
2. По назначению: приточные и вытяжные.
3. По зоне обслуживания: местные и общеобменные.
4. По конструктивному исполнению: канальные и бесканальные.
3.2.1 ЕСТЕСТВЕННАЯ ВЕНТИЛЯЦИЯ
Перемещение воздуха в системах естественной вентиляции происходит:
вследствие разности температур наружного (атмосферного) воздуха и воздуха в помещении, так называемой аэрации;
вследствие разности давлений «воздушного столба» между нижним уровнем (обслуживаемым помещением) и верхним уровнем – вытяжным устройством (дефлектором), установленным на кровле здания;
в результате воздействия так называемого ветрового давления.
Аэрацию применяют в цехах со значительными тепловыделениями, если концентрация пыли и вредных газов в приточном воздухе не превышает 30% предельно допустимой в рабочей зоне. Аэрацию не применяют, если по условиям технологии производства требуется предварительная обработка приточного воздуха или, приток наружного воздуха вызывает образование тумана или конденсата.
В помещениях с большими избытками тепла воздух всегда теплее наружного. Более тяжелый наружный воздух, поступая в здание, вытесняет из него менее плотный теплый воздух. При этом в замкнутом пространстве помещения возникает циркуляция воздуха, вызываемая источником тепла, подобная той, которую вызывает вентилятор.
В системах естественной вентиляции, в которых перемещение воздуха создается за счет разности движений воздушного столба, минимальный перепад по высоте между уровнем забора воздуха из помещения и его выбросом через дефлектор должен быть не менее 3 м. При этом рекомендуемая длина горизонтальных участков воздуховодов не должна быть более 3 м, а скорость воздуха в воздуховодах – не превышать 1 м/с.
Воздействие ветрового давления выражается в том, что на наветренных (обращенных к ветру) сторонах здания образуется повышенное, а на подветренных сторонах, а иногда и на кровле, - пониженное давление (разрежение).
Если в ограждениях здания имеются проемы, то с наветренной стороны атмосферный воздух поступает в помещение, а с заветренной – выходит из него, причем скорость движения воздуха в проемах зависит от скорости ветра, обдувающего здание, и, соответственно, от величин возникающих разностей давлений.
Системы естественной вентиляции просты и не требуют сложного дорогостоящего оборудования и расхода электрической энергии. Однако зависимость эффективности этих систем от переменных факторов (температуры воздуха, направления и скорости ветра), а также небольшое располагаемое давление не позволяют решать с их помощью все сложные и многообразные задачи в области вентиляции.
3.2.2 МЕХАНИЧЕСКАЯ ВЕНТИЛЯЦИЯ
В механических системах вентиляции используются оборудование и приборы (вентиляторы, электродвигатели, воздухонагреватели, пылеуловители, автоматика и др.), позволяющие перемещать воздух на значительные расстояния. Затраты электроэнергии на их работу могут быть довольно большими. Такие системы могут подавать и удалять воздух из локальных зон помещения в требуемом количестве, независимо от изменяющихся условий окружающей воздушной среды. При необходимости воздух подвергают различным видам обработки (очистке, нагреванию, увлажнению и т.д.), что практически невозможно в системах с естественным побуждение.
Следует отметить, что в практике часто предусматривают так называемую смешанную вентиляцию, т.е. одновременно естественную и механическую вентиляцию.
В каждом конкретном проекте определяется, какой тип вентиляции является наилучшим в санитарно-гигиеническом отношении, а также экономически и технически более рациональным.
3.2.2.1 КЛАССИФИКАЦИЯ ПРОМЫШЛЕННЫХ ПЫЛЕУЛОВИТЕЛЕЙ. В технике пылеулавливания применяется большое число аппаратов, отличающихся друг от друга как по конструкции, так и по принципу осаждения взвешенных частиц. По способу улавливания пыли их обычно подразделяют на аппараты сухой, мокрой и электрической очистки газов.
В основе работы сухих пылеуловителей лежат гравитационные, инерционные и центробежные механизмы осаждения. Самостоятельную группу аппаратов сухой очистки пылеуловители фильтрационного действия. В основе работы мокрых пылеуловителей лежит контакт запыленных газов с промывной жидкостью, при этом осаждение частиц происходит на капли, поверхность газовых пузырей или пленку жидкости. В электрофильтрах осаждение частиц пыли происходит за счет сообщения им электрического заряда.
3.2.2.2 ОСНОВНЫЕ МЕХАНИЗМЫ ОСАЖДЕНИЯ ЧАСТИЦ. Работа любого пылеулавливающего аппарата основана на использовании одного или нескольких механизмов осаждения взвешенных в газах частиц.
Гравитационное осаждение (седиментация) происходит в результате вертикального оседания частиц под действием силы тяжести при прохождении их через газоочистной аппарат.
Осаждение под действием центробежной силы отмечается при криволинейном движении аэродисперсного потока, когда развиваются центробежные силы, под действием которых частицы отбрасываются на поверхность осаждения.
Инерционное осаждение происходит в том случае, когда масса частицы или скорость ее движения настолько значительны, что она не может следовать вместе с газом по линии тока, огибающей препятствие, а, стремясь по инерции продолжить свое движение, сталкивается с препятствием и осаждается на нем.
Зацепление (эффект касания) наблюдается, когда расстояние частицы, движущейся с газовым потоком, от обтекаемого тела равно или меньше ее радиуса.
Диффузионное осаждение. Мелкие частицы испытывают непрерывное воздействие молекул газа, находящихся в броуновском движении, в результате которого возможно осаждение этих частиц на поверхности обтекаемых тел или стенок аппарата.
Электрическое осаждение. В процессе ионизации газовых молекул электрическим зарядом происходит заряд частиц, содержащихся в газах, а затем под действием электрического поля они осаждаются на электродах. Электрическое осаждение возможно и при взаимодействии частиц с каплями (или пузырями), причем электрические заряды могут быть подведены к частицам, к орошающей жидкости, или одновременно и к частицам, и к жидкости. Электрическое осаждение частиц может происходить и при прохождении аэрозоля через фильтрующие перегородки.
3.2.2.3 СУХИЕ МЕХАНИЧЕСКИЕ ПЫЛЕУЛОВИТЕЛИ. К сухим механическим пылеуловителям относятся аппараты, использующие различные механизмы осаждения: гравитационный (пылеосадительные камеры), инерционный (осаждение пыли за счет изменения направления движения газового пока или на препятствие) и центробежные (одиночные, групповые и батарейные циклоны, вихревые и динамические пылеуловители).
В табл. 3.1 приведены некоторые характерные параметры сухих механических пылеуловителей.
В настоящее время пылеосадительные камеры (рис. 3.1) применяются только в качестве аппаратов предварительной очистки, особенно при высокой начальной концентрации пыли.
В осадительных камерах достаточно эффективно улавливаются частицы пыли размером 30 – 50 мкм.
Основные достоинства осадительных камер заключаются в простоте конструкции, низкой стоимости, в небольших расходах энергии и в возможности улавливания абразивной пыли. Кроме того, работа камер не подвержена влиянию температуры и обеспечивает улавливание пыли в сухом виде. Однако, для достижения высокой эффективности при улавливании относительно мелкой пыли необходимы очень громоздкие камеры.
Таблица 3.1
Характерные параметры сухих механических пылеуловителей
Òèï ïûëåóëîâèòåëÿ | Ìàêñèìàëüíàÿ ïðîèçâîäèòåëüíîñòü ì3/÷ | Ýôôåêòèâíîñòü ïûëåóëàâëèâàíèÿ ÷àñòèö ðàçëè÷íûõ ðàçìåðîâ | Ãèäðàâëè÷åñêîå ñîïðîòèâëåíèå, Ïà | Âåðõíèé ïðåäåë òåìïåðàòóðû ãàçîâ, îÑ |
Îñàäèòåëüíàÿ êàìåðà | Îïðåäåëÿåòñÿ âîçìîæíîé ïëîùàäüþ äëÿ ðàçìåùåíèÿ | >50 ìêì (80-90%) | 50-130 | 350-550 |
Öèêëîí | 85000 | 10 ìêì (50-80%) | 250-1500 | 350-550 |
Âèõðåâîé ïûëåóëîâèòåëü | 30000 | 2 ìêì (90%) | äî 2000 | äî 250 |
Áàòàðåéíûé öèêëîí | 170000 | 5 ìêì (90%) | 750-1500 | 350-550 |
Èíåðöèîííûé ïûëåóëîâèòåëü | 127500 | 2 ìêì (90%) | 750-1500 | äî 400 |
Äèíàìè÷åñêèé ïûëåóëîâèòåëü | 42500 | Òî æå | - | äî 400 |