Смекни!
smekni.com

Позиционная система счисления. Двоичная, восьмеричная, десятичная, шестнадцатеричная (стр. 1 из 2)

Федеральное агентство по образованию

Пензенская государственная технологическая

академия.

Контрольная работа №1

по архитектуре персонального компьютера

студента группы 09ПВ2зу

Первушкина Николая Петровича

Тема: 1. Позиционная система счисления. Двоичная, восьмеричная, десятичная, шестнадцатеричная.

442436

Г. Пенза

Ул. Рахманинова 14 кв. 46

89042639599

Пенза 2010г.

Содержание

Введение. 3

1. Системы счисления. 3

2. Основные позиционные системы счисления. 3

3. Арифметические операции с числами в позиционных системах счисления. 3

Заключение. 3

Список использованной литературы.. 3

Введение

В зависимости от способа изображения чисел с помощью цифр системы счисления делятся на позиционные и непозиционные.

Вычислительные машины в принципе могут быть построены в любой системе счисления. Но столь привычная для нас десятичная система окажется крайне неудобной. Если в механических вычислительных устройствах, использующих десятичную систему, достаточно просто применить элемент со множеством состояний (колесо с десятью зубьями), то в электронных машинах надо было бы иметь 10 различных потенциалов в цепях.

1. Системы счисления

Непозиционные и позиционные системы счисления

Системой счисления называется совокупность правил для обозначения (записи) действительных чисел с помощью цифровых знаков. Для записи чисел в конкретных системах счисления используется некоторый конечный алфавит, состоящий из цифр а1 , а2, а3,….,аn. При этом каждой цифре аi в записи числа ставится в соответствие определенный количественный эквивалент. Различают непозиционные и позиционные системы счисления.

Непозиционные системы счисления

В ней количественный эквивалент каждой цифры, входящей в запись данного числа, не зависит от места (позиции) этой цифры в ряду других цифр. Пример: римская система счисления. В ней для записи различных целых чисел используются символы I, V, X, L, C, D, M и т.д., обозначающие соответственно 1, 5, 10, 50, 100, 500, 1000 и т.д. Например, запись MCMLXXXV означает число 1985. Общим недостатком непозиционных систем является сложность представления в них достаточно больших чисел, так как при этом получается чрезвычайно громоздкая запись чисел или требуется очень большой алфавит используемых цифр. В ЭВМ применяют только позиционные системы счисления, в которых количественный эквивалент каждой цифры алфавита зависит не только от вида этой цифры, но и от ее местоположения в записи числа.

Позиционные системы счисления

В позиционных системах счисления вес каждой цифры изменяется в зависимости от ее позиции в последовательности цифр, изображающих число. Любая позиционная система характеризуется своим основанием. Основание позиционной системы счисления - это количество различных знаков или символов, используемых для изображения цифр в данной системе. За основание можно принять любое натуральное число - два, три, четыре, шестнадцать и т.д. Следовательно, возможно бесконечное множество позиционных систем.

2. Основные позиционные системы счисления

Десятичная система счисления

Пришла в Европу из Индии, где она появилась не позднее VI века н.э. В этой системе 10 цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, но информацию несет не только цифра, но и место, на котором цифра стоит (то есть ее позиция). В десятичной системе счисления особую роль играют число 10 и его степени: 10, 100, 1000 и т.д. Самая правая цифра числа показывает число единиц, вторая справа - число десятков, следующая - число сотен и т.д. Позиции цифр в записи числа называют его разрядами. В десятичной системе счисления вес каждого разряда в 10 раз больше веса предыдущего. Всякое число в десятичной системе счисления можно представить в виде суммы различных целых степеней десяти с соответствующими коэффициентами аi (0-9), взятыми из алфавита данной системы счисления.

Например: 245,83 = 2 * 102 + 4 * 101 + 5 * 100 + 8 * 10-1 + 3 * 10-2. Любое десятичное позиционное число N можно представить с помощью целых степеней десяти, взятых с соответствующими коэффициентами, т.е.

N10 = am * 10m + am-1 * 10m-1 + …+ a1*10+ +a0 * 100 + a-1 * 10-1 +…+ a-n * 10-n.

Двоичная система счисления.

В этой системе всего две цифры - 0 и 1. Особую роль здесь играет число 2 и его степени: 2, 4, 8 и т.д. Самая правая цифра числа показывает число единиц, следующая цифра - число двоек, следующая - число четверок и т.д. Двоичная система счисления позволяет закодировать любое натуральное число - представить его в виде последовательности нулей и единиц. В двоичном виде можно представлять не только числа, но и любую другую информацию: тексты, картинки, фильмы и аудиозаписи. Инженеров двоичное кодирование привлекает тем, что легко реализуется технически. Наиболее простыми с точки зрения технической реализации являются двухпозиционные элементы, например, электромагнитное реле, транзисторный ключ.

Восьмеричная система счисления.

В этой системе счисления 8 цифр: 0, 1, 2, 3, 4, 5, 6, 7. Цифра 1, указанная в самом младшем разряде, означает - как и в десятичном числе - просто единицу. Та же цифра 1 в следующем разряде означает 8, в следующем 64 и т.д. Число 100 (восьмеричное) есть не что иное, как 64 (десятичное). Чтобы перевести в двоичную систему, например, число 611 (восьмеричное), надо заменить каждую цифру эквивалентной ей двоичной триадой (тройкой цифр). Легко догадаться, что для перевода многозначного двоичного числа в восьмеричную систему нужно разбить его на триады справа налево и заменить каждую триаду соответствующей восьмеричной цифрой.

Шестнадцатеричная система счисления.

Запись числа в восьмеричной системе счисления достаточно компактна, но еще компактнее она получается в шестнадцатеричной системе. В качестве первых 10 из 16 шестнадцатеричных цифр взяты привычные цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, а вот в качестве остальных 6 цифр используют первые буквы латинского алфавита: A, B, C, D, E, F. Цифра 1, записанная в самом младшем разряде, означат просто единицу. Та же цифра 1 в следующем - 16 (десятичное), в следующем - 256 (десятичное) и т.д. Цифра F, указанная в самом младшем разряде, означает 15 (десятичное). Перевод из шестнадцатеричной системы в двоичную и обратно производится аналогично тому, как это делается для восьмеричной системы.

3. Арифметические операции с числами в позиционных системах счисления

Системой счисления называется совокупность приемов наименования и записи чисел. В любой системе счисления для представления чисел выбираются некоторые символы (их называют цифрами), а остальные числа получаются в результате каких-либо операций над цифрами данной системы счисления.

Система называется позиционной, если значение каждой цифры (ее вес) изменяется в зависимости от ее положения (позиции) в последовательности цифр, изображающих число.

Число единиц какого-либо разряда, объединяемых в единицу более старшего разряда, называют основанием позиционной системы счисления. Если количество таких цифр равно P, то система счисления называется P-ичной. Основание системы счисления совпадает с количеством цифр, используемых для записи чисел в этой системе счисления.

Запись произвольного числа x в P-ичной позиционной системе счисления основывается на представлении этого числа в виде многочлена

x = anPn + an-1Pn-1 + ... + a1P1 + a0P0 + a-1P-1 + ... + a-mP-m

Арифметические действия над числами в любой позиционной системе счисления производятся по тем же правилам, что и десятичной системе, так как все они основываются на правилах выполнения действий над соответствующими многочленами. При этом нужно только пользоваться теми таблицами сложения и умножения, которые соответствуют данному основанию P системы счисления.

При переводе чисел из десятичной системы счисления в систему с основанием P>1 обычно используют следующий алгоритм:

1) если переводится целая часть числа, то она делится на P, после чего запоминается остаток от деления. Полученное частное вновь делится на P, остаток запоминается. Процедура продолжается до тех пор, пока частное не станет равным нулю. Остатки от деления на P выписываются в порядке, обратном их получению;

2) если переводится дробная часть числа, то она умножается на P, после чего целая часть запоминается и отбрасывается. Вновь полученная дробная часть умножается на P и т.д. Процедура продолжается до тех пор, пока дробная часть не станет равной нулю. Целые части выписываются после двоичной запятой в порядке их получения. Результатом может быть либо конечная, либо периодическая двоичная дробь. Поэтому, когда дробь является периодической, приходится обрывать умножение на каком-либо шаге и довольствоваться приближенной записью исходного числа в системе с основанием P.

Заключение

Наиболее удобной для построения ЭВМ оказалась двоичная система счисления, т.е. система счисления, в которой используются только две цифры: 0 и 1, т.к. с технической точки зрения создать устройство с двумя состояниями проще, также упрощается различение этих состояний.

Для представления этих состояний в цифровых системах достаточно иметь электронные схемы, которые могут принимать два состояния, четко различающиеся значением какой-либо электрической величины - потенциала или тока. Одному из значений этой величины соответствует цифра 0, другому - 1. Относительная простота создания электронных схем с двумя электрическими состояниями и привела к тому, что двоичное представление чисел доминирует в современной цифровой технике. При этом 0 обычно представляется низким уровнем потенциала, а 1 - высоким уровнем. Такой способ представления называется положительной логикой.