3.2. Построение эпюры поперечных сил
Эпюра поперечных сил Q является графическим представлением изменения внутренних сил по длине балки и вычерчивается под расчетной схемой балки.
Правило определения величины поперечной силы в сечении заключается в следующем. Поперечная сила в сечении балки равна сумме проекций на сечение всех внешних сил (в том числе и реакций) для рассматриваемой части балки. При этом внешние силы, вращающие рассматриваемую часть (левую или правую) относительно сечения по ходу часовой стрелки, считаются положительными, а вращающие против часовой стрелки – отрицательными. Согласно данному правилу составляем уравнения для расчета изменения величины Q на каждом участке балки.
По уравнениям рассчитываем граничные для каждого участка балки значения Q, откладываем эти значения с учетом знаков в соответствующих сечениях без масштаба и строим эпюру по длине балки (рис. 5)
3.3. Построение эпюры изгибающих моментов
Эпюра изгибающих моментов М является графическим представлением изменения внутренних моментов по длине балки и вычерчивается под эпюрой поперечных сил Q.
Правило определения величины изгибающего момента в сечении заключается в следующем. Изгибающий момент в сечении балки равен сумме моментов всех внешних сил (в том числе и опорных реакций) относительно сечения для рассматриваемой части балки. При этом для рассматриваемой левой части балки момент считается положительным, если он направлен по ходу часовой стрелки относительно сечения. Для рассматриваемой правой части балки момент считается положительным, если он направлен против хода часовой стрелки относительно сечения, иначе – моменты считаются отрицательными. Согласно данному правилу составляем уравнения для расчета изменения величины М на каждом участке балки.
По уравнениям рассчитываем граничные для каждого участка балки значения М, откладываем эти значения с учетом знаков в соответствующих сечениях без масштаба и строим эпюру по длине балки (рис. 5)
3.4. Определение размеров поперечного сечения балки
Для расчёта параметров поперечных сечений балки используем условие прочности по нормальным напряжениям (1).
При этом величину нормальных напряжений
где М – изгибающий момент в сечении;
тогда величина момента сопротивления сечения
Из условия (12) следует, что максимальное значение
- для двутавра:
N = 55; Wx = 2035·103 мм3; А = 11800 мм2; Jx = 55962·104 мм4.
Определение размеров прямоугольного, круглого и кольцевого сечения выполняем расчётным путем с учётом заданных в п. 3 соотношений.
Формулы для расчёта момента сопротивления сечений имеют вид:
- для прямоугольного сечения
- для круглого сечения
- для кольцевого сечения
3.5. Построение эпюры нормальных напряжений в опасном сечении
Эпюра
Построение эпюры нормального напряжения в опасном сечении для двутавра рис. 6.