где
Так как условие [3, 124] удовлетворяется при длительной части нагрузки
(39 < 61,82), и при полной нагрузке (53,18< 61,82), в элементе трещины не возникают.
2.4.3 Расчет наклонных сечений на образование трещин
Расчет производится в сечении у грани опоры плиты (I-I) и на расстоянии длины зоны передачи напряжений в сечении (2-2) [рис. 2.7]. [3, п.4.11]
Длина зоны передачи напряжений равна:
Рис. 2.7 - Определение напряжения в арматуре.
где
Определение нормальных напряжений в бетоне от внешней нагрузки и усилия предварительного обжатия на уровне центра тяжести приведенного сечения (У=0): в сечении 2-2
в сечении 1-1
Определение касательных напряжений в бетоне от внешней нагрузки:
Значение главных напряжений (растягивающих smt и сжимающих smc) в бетоне: в сечении 2-2
В сечении 1-1:
Определение коэффициента влияния двухосного сложного напряженного состояния на прочность бетона:
в сечении 2-2
где a = 0,01 для тяжелого бетона. Принимаем gb4=1, [3, 142],
в сечении 1-1
Принимаем gb4 = 1.
Проверка образования трещин наклонных к продольной оси элемента производится из условия
В сечении 1-1:
В сечении 2-2:
2.4.4 Определение прогиба плиты при отсутствии трещин в растянутой зоне
Определение кривизны от кратковременной нагрузки (2,0 кН/м2) [3, 4.24]
где изгибающий момент от временной нагрузки:
jb1 = 0,85 - коэффициент, учитывающий влияние кратковременной ползучести бетона.
Определение кривизны от постоянной и длительных нагрузок (5,5 кН/м2)
где
Определение кривизны, обусловленной выгибом элемента от кратковременного обжатия
Определение кривизны, обусловленной выгибом элемента вследствие усадки и ползучести бетона от предварительного обжатия.
где eb и eb’ - относительно деформации бетона от усадки и ползучести сил, предварительного обжатия соответственно на уровне растянутой арматуры и крайнего сжатого волокна бетона, определяемые по формулам:
Так как верхняя зона у нас от предварительного обжатия растянута, то ползучести бетона нет и s6’ = s9’ = 0.
Прогиб будет равен [3, п.4.24, п.4.31]
Допустимый прогиб при пролетах более 6 ≤ l ≤ 7.5 м должен быть не более 3 см [3, табл.4], и в данном случае составляет
Полученный прогиб меньше допустимого, следовательно удовлетворяет требованиям СНиП.
3 РАСЧЕТ РИГЕЛЯ ПЕРЕКРЫТИЯ
3.1 Общие положения
В здании с неполным каркасом ригель представляет собой неразрезную балку, шарнирно опертую на стены и на промежуточные колонны. При многопустотных плитах нагрузка считается равномерно распределенной. Изгибающие моменты и поперечные силы в упругой неразрезной балке с пролетами, отличающимися не более чем на 20%, определяются по формулам:
при равномерно распределенной нагрузке
где a, b, g, d - табличные коэффициенты [1, приложение 7].
В связи с тем, что постоянная нагрузка расположена по всем пролетам, а временная нагрузка может быть расположена в наиболее невыгодном положении, то для получения наибольших усилий в пролетах и на опорах необходимо рассмотреть их сочетания и построить огибающую эпюру моментов. Для ослабления армирования на опорах и упрощения конструкций монтажных стыков проводят перераспределение моментов между опорными и пролетными сечениями. Отличие между выровненными ординатами опорных и вычисляемых по упругой схеме моментов, не должно превышать 30%.
3.2 Исходные данные для расчета
В соответствии с данными первого раздела ригель представляет собой четырехпролетную неразрезную балку с пролетами, равными расстоянию от стены до оси первой колонны и между осями колонн 7,00 м. Расстояние между ригелями - 5,4 м и от ригеля до стены – 5,9 м [рис. 3.1]. Сечение ригеля прямоугольное 0,3 ´0,45 м. Постоянная расчетная нагрузка на перекрытие от собственного веса составляет g = 4,78 кН/м2, временная – 1,8 кН/м2, класс бетона В25. Класс арматуры A-III.
Рис. 3.1 - Грузовая площадь на 1 п.м ригеля
3.3 Сбор нагрузок на погонный метр ригеля
Постоянная расчетная нагрузка:
Временная расчетная нагрузка:
Полная нагрузка
3.4 Определение изгибающих моментов и поперечных сил
Расчетный пролет крайнего пролета равен расстоянию от оси опорной площадки на стену до оси первой колонны
Расчетный средний пролет принимается равным расстоянию между осями колонн
Рис. 3.2 - Схемы загружения ригеля
Рис 3.3 - Эпюры изгибающих моментов в сечениях ригеля
Для выравнивания опорных моментов по схеме (1 + 4) накладываем на полученную эпюру треугольную добавочную эпюру, с ординатой вершины равной 324,4 х 0,3= 102,4 ≈ 102 кНм. Изгибающий момент на опоре В станет равным
-342,4+102= -240,4 кНм. Тогда момент в первом пролете станет равным 223,4 + 42,84 =266,2 кНм. Так как эта величина больше максимального момента равного 262,5 кНм (1 + 2), то он является расчетным в первом пролете. На опоре С максимальный момент составляет -240,7 кНм (1+5). Для его выравнивания с моментом на опоре В накладываем вторую добавочную эпюру с ординатой вершины равной 102 кНм. Изгибающий момент на опоре В станет равным -342,4+102= -240,4 кНм. Во втором пролете изгибающий момент станет равным 121,6+51= 172,6 кНм, что больше 154,9 кНм (1 + 3), и он также является расчетным. Выровненная эпюра моментов приведена на рисунке 3.1 б).