Смекни!
smekni.com

Проектирование несущих железобетонных конструкций многоэтажного промышленного здания 2 (стр. 4 из 4)

4 из условия прочности:

24,53

4 из условия обеспечения минимального коэффициента армирования

mmin = 0,002 (0,2%): As,tot³ 2A×mmin = 2×1225×0,002 = 4,9 см2.

· Принимаем по сортаментуAs,tot = 6,16 см2(4Æ14A-III).

· Устанавливаем 4 арматурных стержня по углам колонны

6. Расчёт и конструирование фундамента

6.1. Общие соображения

· Проектируем отдельный монолитный фундамент мелкого заложения под колонну.

4 Основные понятия:обрез фундамента – это его верхняя грань, подошва фундамента – это нижняя грань, основание – это грунт под подошвой фундамента, глубина заложения подошвы фундамента – это расстояние от наружной поверхности земли до подошвы фундамента.

· Глубина заложения подошвы фундамента назначается исходя из инженерно-геологических условий площадки строительства, климатических воздействий на верхние слои грунта (в том числе условий промерзания грунта), а также конструктивных особенностей возводимого и соседних сооружений и составляет (по заданию) df = 1,7м.

· Пол 1-го этажа выполняется по грунту. Заглубление обреза фундамента относительно уровня пола 1-го этажа: d0 = 0,15 м.

· Высота фундамента: hf= dfd0 = 1,7 – 0,15 = 1,55 м.

· Расчётное сопротивление грунта основания (по заданию):

R0= 0,25МПа = 250 кН/м2.

· Средний удельный вес фундамента с грунтом на его уступах: gm = 20 кН/м3.

· Классы бетона и арматуры для фундамента принимаются такими же, как и у ригеля перекрытия Коэффициент длительности действия нагрузки gb2 = 0,9.

· Под фундаментом предусматривается бетонная подготовка толщиной 100 мм из бетона класса В30.

· Фундамент под колонну, сжатую со случайным эксцентриситетом, воспринимает в основном только продольную силу, поэтому его можно считать центрально нагруженным. Продольные усилия на уровне верха фундамента допускается принимать такими же, как на уровне пола 1-го этажа

нормативное усилие Nk.n = 2360кН; расчётное усилие Nk = 2 514 кН.

Центрально нагруженные фундаменты обычно проектируют квадратными в плане.

4 Внецентренно нагруженные колонны и фундаменты проектируют прямоугольными, при этом широкая сторона располагается в плоскости действия изгибающего момента.

· Расчёт фундамента состоит из двух этапов. На первом из них проводится расчёт по несущей способности основания, в результате которого определяется площадь подошвы фундамента Af. На втором этапе выполняется расчёт по несущей способности самого фундамента, на основе которого определяются остальные размеры фундамента и площадь рабочей арматуры As,f.

6.2. Определение площади подошвы фундамента

· Расчёт по несущей способности основания выполняется на действие нормативных нагрузок с учётом веса фундамента и грунта на его уступах. Расчёт производится из условия, что давление под подошвой фундамента pn не должно превышать расчётное сопротивление грунта основания R0:

.

· Тогда требуемая площадь подошвы фундамента:

15,34

· Необходимый размер стороны подошвы квадратного в плане фундамента:

3,9 принимаем af = 3,9м = 3900 мм (кратно 100 мм).

· Фактическая площадь подошвы фундамента: Af = 3902 = 152 100см2.

· Расчёт по несущей способности конструкции самого фундамента выполняется на действие расчётных нагрузок без учёта веса фундамента и грунта на его уступах. Напряжения под подошвой фундамента в этом случае:

0,022

6.3. Определение основных размеров фундамента

· Высота фундамента hf= 1,55 м>0,90 м, поэтому проектируем фундамент трёхступенчатым. Размеры ступеней назначаются таким образом, чтобы внутренние грани ступеней не пересекали прямую, проведённую под углом 45° к грани колонны на уровне верха фундамента. Указанная прямая определяет границы так называемой пирамиды продавливания.

Определение высоты ступеней

· Высота ступеней назначается кратной50 мм. Принимаем высоту первой (нижней) и второй (средней) ступеней h1 = h2 = 350 мм, а третьей (верхней) ступени h3 = 450 мм.

· Принимаем расстояние от нижней грани фундамента до центра тяжести растянутой арматуры подошвыа = 5 см, тогда рабочая высота фундамента:

h0 = hfa = 155 – 5 = 150 см.

· Рабочая высота первой и второй ступеней:

h0,1 = h1a = 35 – 5 = 30 см; h0,2 = h1 + h2a = 35 + 35 – 5 = 65 см.

6.4. Подбор арматуры подошвы фундамента

· Под действием реактивного). Растягивающие усилия воспринимает продольная арматура, расположенная возле подошвы фундамента. Подбор продольной арматуры производится для сечений, проходящих по грани средней ступени (1-1), по грани верхней ступени (2-2) и по грани колонны (3-3).

· Расчётный изгибающий момент в каждом исследуемом сечении определяется как в консоли вылетом li:

.

· Плечо внутренней пары сил при расчёте фундамента допускается принимать равнымzb = 0,9h0. Тогда требуемая площадь сечения арматуры составит:

,

где для арматуры класса А-III расчётное сопротивление Rs = 36,5 кН/см2.

· Фундаментные плиты армируют по подошве сварными сетками; диаметр арматуры составляет 10…16 мм, шаг стержней s = 100…200 мм.

· Применим для армирования сетку с ячейками 100´100 мм, расстояние от вертикальной грани подошвы до первого стержня назначим равным 50 мм. Тогда в каждом направлении сетка будет состоять из af/100 = 3900/100 = 39 стержней.

· Требуемая площадь одного стержня: As,1³ 1,75 см2.

Принимаем в итоге по сортаменту34Æ16 А-III, шаг s = 200 мм;

Аs,1 = 68,374 см2.

· Толщина защитного слоя бетона фундамента ab должна быть выше минимально допустимой ab,min (при наличии подготовки под фундаментом ab,min = 35 мм):

ab =a – 0,5D = 50 – 0,5×12 = 44 мм>ab,min = 35 мм. Условие выполняется.

· Процент армирования (для сечения 1-1):

.

· В пределах глубины стакана дополнительно предусматриваем 5 сеток конструктивного поперечного армирования из стержней Æ8A-I, устанавливаемых с шагом s = 150 мм, причём верхняя сетка находится на расстоянии s0 = 50 мм от верха стакана.

Список литературы

1. СНиП 2.01.07 – 85*. Нагрузки и воздействия. / Госстрой России. – М.: ФГУП ЦПП, 2004. – 44 с.

2. СНиП 2.03.01 – 84*. Бетонные и железобетонные конструкции. / Госстрой России. – М.: ФГУП ЦПП, 2001. – 76 с.

3. СНиП 52-01-2003. Бетонные и железобетонные конструкции. Основные положения. – М.: ФГУП ЦПП, 2004. – 24 с.

4. Строительные конструкции: Учебник для ВУЗов / Под ред. В.Н. Байкова и Г.И. Попова. – М.: Высш. шк., 1986. – 543 с.

5. Строительные конструкции: Учебник для ВУЗов / В.П. Чирков, В.С. Фёдоров, Я.И. Швидко, М.В. Шавыкина и др. Под ред. В.П. Чиркова. – М.: ГОУ «Учебно-методический центр по образованию на железнодорожном транспорте», 2007. – 448 с.

6. Байков В.Н., Сигалов Э.Е. Железобетонные конструкции. Общий курс: Учебник для ВУЗов. – М.: Стройиздат, 1991. – 767 с.

7. Бондаренко В.М., Римшин В.И. Примеры расчёта железобетонных и каменных конструкций: Учеб.пособие. – М.: Высш. шк., 2006. – 504 с.

8. Тимофеев Н.А. Проектирование несущих железобетонных конструкций многоэтажного промышленного здания: Метод.указания к курсовой работе и практическим занятиям для студентов спец. «Строительство ж. д., путь и путевое хозяйство». – М.: МИИТ, 2004. – 48 с.