Гидравлический расчет один из важнейших разделов проектирования в эксплуатации тепловой сети.
При проектировании в задачу гидравлического расчета входит:
– определение диаметров трубопроводов;
– определение падения давления (напора);
– определение давлений (напоров) в различных точках сети;
– увязка всех точек системы при статическом и динамическом режимах с целью обеспечения допустимых давлений и требуемых напоров в сети и абонентских системах.
Независимо от результатов расчета наименьшие диаметры труб принимают: для распределительных трубопроводов – не менее 50 мм, для ответвлений к отдельным зданиям – не менее 25 мм.
Удельные потери на трение R
– для участков расчетной магистрали от источника тепла до наиболее удаленного потребителя до 80 Па/м;
– для ответвления от расчетной магистрали – по располагаемому давлению, но не более 300 Па/м.
При определении диаметра труб принимаем значения коэффициента эквивалентной шероховатости
По приложению 1 ,[1] выбираем наружный диаметр (d
Таблица 5.2 -Расчетные данные для гидравлического расчета трубопроводов
№ участка | Расход теплоносителя G, т/ч | Диаметры трубопроводов | Скорость движения теплоносителя | Удельные потери давления на трение | ||||
наружныйd | Услов-ный d | Внутренний d | | R | ||||
1 | о – а | 361,48 | 325×8 | 300 | 309 | 1,39 | 6,78 | 66,5 |
2 | а – б | 296,32 | 325×8 | 300 | 309 | 1,12 | 4,4 | 43,2 |
3 | б – в | 141,55 | 325×8 | 300 | 309 | 0,54 | 1,03 | 10,1 |
4 | в – микрорайон IV | 88,6 | 194×6 | 175 | 184 | 0,1 | 6,89 | 67,6 |
5 | а – микрорайон I | 65,16 | 194×6 | 175 | 184 | 0,74 | 3,7 | 36,3 |
6 | б – микрорайон II | 154,76 | 194×6 | 175 | 184 | 1,73 | 20,74 | 203,5 |
7 | в – микрорайон III | 52,96 | 194×6 | 175 | 184 | 0,6 | 0,48 | 4,7 |
Для обеспечения надежной работы тепловой сети определяем место установки неподвижных опор, компенсаторов и запорной арматуры.
Неподвижные опоры фиксируют отдельные точки трубопровода, делят его на независимые в отношении температурных удлинений участки и воспринимают усилия, возникающие в трубопроводах при различных схемах и способах компенсации тепловых удлинений. Расстояние между неподвижными опорами зависит от диаметров трубопровода, способа прокладки тепловых сетей, типа компенсатора, параметров теплоносителя. Расстояние между неподвижными опорами принимаем по таблице 3.3 [1] .
Тепловые удлинения трубопроводов при температуре теплоносителя от 50º С и выше должны восприниматься специальными компенсирующими устройствами, предохраняющими трубопровод от возникновения недопустимых деформаций и напряжений. В качестве компенсирующего устройства принимаем сальниковые и П-образные компенсаторы.
Таблица 5.3 - Проектные расстояния между неподвижными опорами, тип компенсатора и их количество
№ участка | Длина участка l, м | Диаметр наружный d | Диаметр условный d | Тип компенсатора | Макс–е расстояние между не подвижными опорами l | Количество компенсаторов | Проектное расстояние между неподвижными опорами на участке тепловой сети | |
П-образные | сальниковые | |||||||
1 | 310 | 325 | 300 | С | 100 | – | 4 | |
2 | 320 | 325 | 300 | С | 100 | – | 4 | |
3 | 320 | 325 | 300 | С | 100 | – | 4 | |
4 | 125 | 194 | 175 | П | 100 | 2 | – | |
5 | 240 | 194 | 175 | П | 100 | 3 | – | |
160 | 194 | 175 | П | 100 | 2 | – | ||
7 | 170 | 194 | 175 | П | 100 | 2 | – |
Проверочный расчет магистрали и ответвлений
Режим движения теплоносителя
Для определения режима движения необходимо сравнить значения критерия Рейнольдса Re с его предельным значением Re
Re= 4G×10³/
где G – расход теплоносителя, кг/с; берем из таблицы 2.1;
d
Re
Re
где К
Re
Коэффициент гидравлического трения:
– для области квадратичного закона:
Сумма коэффициентов местных сопротивлений на рассчитываемом участке тепловой сети: