Смекни!
smekni.com

Водохранилищный гидроузел с грунтовой плотиной на реке Тура Свердловской области (стр. 4 из 5)

L = d∙m1 + B + Hпл∙m2 – Sдр = 3,1∙3 + 10 + 6∙2 – 9,5 = 21,8 м;

Lр = ∆l + L = 1,25 + 21,8 = 23,05 м,

где ∆l = β ∙ H1 = 0,43∙2,9 = 1,25 м,

где

;

¾ коэффициент фильтрации через тело плотины: Кф = 0,001 м/сут.

¾ координаты кривой депрессии, рассчитанные по формуле (18):

x 1,25 5 10 15 20 21,8
y 2,85 2,57 2,19 1,74 1,10 0

Сечение III-III

¾ высота плотины в сечении:

Нпл = ÑГП – ÑДна = 221,2 – 216,9 = 4,3 м;

¾ глубина воды в верхнем бьефе:

Н1 = ÑНПУ – ÑДна = 218,1– 216,9 = 1,2 м;

d = Hпл – H1 = 4,3 – 1,2 = 3,1 м;

¾ горизонтальная проекция депрессионной кривой:

L = d∙m1 + B + Hпл∙m2 – Sдр = 3,1∙3 + 10 + 4,3∙2 – 9,5 = 18,4 м;

Lр = ∆l + L = 0,52 + 18,4 = 18,92 м,

где ∆l = β ∙ H1 = 0,43∙1,2 = 0,52 м,

где

;

¾ коэффициент фильтрации через тело плотины: Кф = 0,001 м/сут.

¾ координаты кривой депрессии, рассчитанные по формуле (18):

x 0,52 1 5 10 15 18,4
y 1,18 1,17 1,02 0,80 0,49 0

3.2.4 Фильтрационный расход

Фильтрационный расход складывается из удельных фильтрационных расходов тела плотины (qтi) и ее основания (qоi):

qi = qтi + qоi , м2/сут (19)

Удельный фильтрационный расход основания плотины находится по формуле:


м2/сут, (20)

где K0 – осредненный коэффициент фильтрации грунтов основания, м/сут;

Т – толщина водопроницаемого слоя основания, м;

Bпл – ширина плотины в сечении по основанию, м;

n – поправочный коэффициент, зависящий от ширины плотины в сечении и от толщины водопроницаемого слоя;

Сечение I-I:

Т = 2,05 м, n = 1,15;

,
;

;

Удельный расход через основание плотины в данном сечении:

м2/сут;

q1 = qт1 + qо1 = 0,0012 + 0,0003 = 0,0015 м2/сут.

Сечение II-II:

Т1 = 1,2 м, Т2 = 7,8 м, n = 1,23;

,

;

;

Удельный расход через основание плотины в данном сечении:

м2/сут;

q2 = qт2 + qо2 = 0,00018 + 0,02 = 0,02 м2/сут.

Сечение III-III:

Т = 9,8 м, n = 1,3;

,

;

;

Удельный расход через основание плотины в данном сечении:

м2/сут;

q3 = qт3 + qо3 = 0,00004 + 0,0001 = 0,00014 м2/сут.


3.2.5 Оценка фильтрационной прочности

Фильтрационная прочность – способность грунта сопротивляться фильтрационным деформациям. Фильтрационная прочность оценивается путем сравнения действительного градиента напора с допустимым. В данном курсовом проекте оценивается только общая фильтрационная прочность грунта тела плотны.

(21)

гдеYср – осредненный градиент напора в расчетной области фильтрации, определяется по формуле:

, (22)

где ∆y – падение депрессионной кривой в пределах массива обрушения;

∆x – расстояние, на котором произошло падение депрессионной кривой.

– осредненный критический градиент напора для грунта, для суглинка принимается равным от 4 до 1,5;

Кн – коэффициент надежности сооружения, для IV класса Кн = 1,1.

Таким образом, отношение

;

Далее определялся осредненный градиент напора в сечениях:

Сечение I-I:

По формуле (22):

;

Т.к.

то условие
соблюдается: 0,21≤1,82 Þ

Þ фильтрационных деформаций не наблюдается.

Сечение II-II:

По формуле (22):

;

Т.к.

то условие
соблюдается: 0,21≤1,82 Þ

Þ фильтрационных деформаций не наблюдается.

Сечение III-III:

По формуле (22):

;

Т.к.

то условие
соблюдается: 0,05≤1,82 Þ

Þ фильтрационных деформаций не наблюдается.

Условие (21) выполняется по всем сечениям, следовательно, фильтрационная прочность грунта тела плотины обеспечена.

3.3 Расчет устойчивости откоса

3.3.1 Расчетные случаи и методы расчета

Различают три расчетных случая:

¾ 1 основной расчетный случай. Когда в верхнем бьефе равна ÑНПУ, а нижнем – 0;

¾ 2 основной расчетный случай. Когда в верхнем бьефе ФПУ1 , а нижнем бьефе УНБ (при основном расходе водосброса);

¾ Поверочный. Когда в верхнем бьефе ФПУ2 , а в нижнем – УНБ (при 1% расходе для сооружения IV класса).

Так как курсовой проект учебный, то ограничиваемся одним расчетным случаем: 1 основным. Метод расчета относится к группе графоаналитических методов и носит название – метод круглоцилиндрических поверхностей сдвига. Расчеты ведутся только для руслового сечения, так как здесь самые неблагоприятные условия.

3.3.2 Исходные данные

Курсовым проектом предусмотрено два типа расчета – на ЭВМ и вручную. Для расчета на ЭВМ потребуются следующие исходные данные:

¾ Высота плотины: Н = 13,2 м;

¾ Ширина гребня плотины: В = 10 м;

¾ Заложение верхового откоса: m1 = 3,0;

¾ Заложение низового откоса: m2 = 2,0;

¾ Глубина воды в верхнем бьефе: H1 = 10,1 м;

¾ Глубина воды в нижнем бьефе: Н2 = 0;

¾ Высота дренажной призмы: Ндр = 2,05 м;

¾ Заложение откоса дренажной призмы: m3 = 1,5;

¾ Объемный вес грунта тела плотины при естественной влажности: g1 = 2,71 т/м3;

¾ Угол внутреннего трения:

а) при естественной влажности: j1 = 20 град.

б) в водонасыщенном состоянии: j2 = 17 град.

¾ Удельное сцепление грунта тела плотины:

а) при естественной влажности: С1 = 2,4 т/м2.

б) в водонасыщенном состоянии: С2 =2,1 т/м2.

¾ Пористость грунта тела плотины: n1 = 36%.

¾ Плотность грунта основания при естественной влажности: g=2,71.

¾ Угол внутреннего трения грунта основания:

а) при естественной влажности j2=17 град.

б) в водонасыщенном состоянии j,3 =17 град.

¾ Удельное сцепление:

а) при естественной влажности: С1=2,4 т/м2.

б) в водонасыщенном состоянии: С=2,1 т/м2.

¾ Пористость грунта основания n=36%

Для ручного расчета применяются те же исходные данные, что и для расчета на ЭВМ – меняется только объемный вес грунта:

Для первого: g1 =2,71 т/м3; для второго: g2 = (1-n1)×(gгт-g0),

гдеg0 – плотность воды: g0 = 1 т/м3.

g1 = (1-0,36)×(2,71-1) = 1,09 т/м3.

3.3.3 Коэффициент устойчивости для произвольной кривой обрушения

Для нахождения коэффициента устойчивости низового откоса строится расчетная схема. Для каждого фрагмента находятся значения sinα и cosα:

sinα = 0,1∙Nфр;

cosα=

;

Определяются средние высоты составных частей каждого фрагмента, имеющие различные плоскости. Вес отсека определяется по формуле:

Gфр = (

)∙b∙ 1пм;

Устанавливается сила трения, возникающая на подошве всего массива обрушения, равная сумме и соответствующая силе по фрагментам:

F = Gфр∙ tgφ ∙ cosα

Составляющая веса массива обрушения:

Т = Gфр∙sinα

Фильтрационная сила учитывается как объемная:

где W – вес фигуры массива обрушения, насыщенного водой

W = ω∙Yср∙1 пм ∙g0 , т,

где ω – площадь фигуры массива обрушения насыщенного водой;

Yср – градиент, равный 0,21 (был определён ранее);