Поскольку
c
мм < 3h0 = 3 ∙ 385 = 1155 ммПринимаем c = 969 мм, c0= 2∙385=770 мм;
98060 H = 98.06 кН кН кН (147.5)Проверка условия
кН > Q=147.5 кН,условие прочности обеспечивается.
Проверка требования
мм > Sw1=100 ммт.е. принятый шаг Sw1=100 мм удовлетворяет требованиям СП [4].
Определение приопорного участка
При равномерно распределённой нагрузке длина приопорного участка определяется в зависимости от:
76.41 Н/мм, где: Н/ мм.qsw2 = 67.92 Н/мм > 0,25 Rbt×b = 0,25 × 0,9 × 300 = 67,5 Н/ мм – условие выполняется, т.е. Mb и Qb,max не пересчитываем.
Так как
Н/ мм > q1 =63.91 Н/ мм, то:где
= 51975 НОбрыв продольной арматуры в пролете. Построение эпюры арматуры.
По изложенному выше расчету определяется площадь продольной рабочей арматуры в опасных участках сечения: в пролетах и на опорах, где действует наибольшие по абсолютной величине моменты.
Для определения места обрыва продольной арматуры строятся огибающая эпюра изгибающих моментов от внешних нагрузок и эпюра арматуры, представляет собой изображение несущей способности сечений ригеля Мult.
Моменты в пяти точках определяются по формуле:
Расчетные моменты эпюры арматуры, которое может воспринять балка в каждом сечении при имеющихся в этих сечениях растянутой арматуры, определяется по формуле:
, где ,мм – высота сжатой зоны.AS – площадь арматуры в рассматриваемом сечении.
Место действия обрыва стержней отстаёт от теоретического на расстоянии W, принимаемом не менее величины, определяемой по формуле:
Q – расчетная поперечная сила в месте теоретического обрыва стержня;
qsw – усилие в поперечных стержнях на единицу длины элемента на рассматриваемом участке;
d – диаметр обрываемого стержня.
При правильном подборе и распределении продольной арматуры по длине ригеля эпюра арматуры Mult повсюду охватывает огибающую эпюру моментов M, нигде не врезаясь в нее, но и не удаляясь от нее слишком далеко в расчетных сечениях. В таком случае во всех сечениях ригеля, будет выполнятся условие прочности по моменту M<Mult и обеспечения экономичности расходование арматуры.
Построение эпюры арматуры ниже иллюстрируется на примере рассчитываемого ригеля рамы. Согласно заданию, построение эпюр производиться для крайнего пролета.
Подсчет моментов сведен в табл. 2, при этом отрицательные моменты в пролете вычисляются для отношения
p/g = 41.42/43.2 »1.
Таблица 2
Крайний пролет «0 - 5» | ||||||||
M = bql12 = b× 84.62 × 4,52 = 1713.6· b (кН×м) | ||||||||
Сечения | 0 | 1 | 2 | 2’ | 3 | 4 | 5 | |
Положительные моменты | b | - | 0,037 | 0,079 | 0,0833 | 0,077 | 0,030 | - |
+М | - | 63.4 | 135.4 | 142.7 | 132 | 51.4 | - | |
Отрицательные моменты | b | -0,050 | -0,003 | +0,021 | - | +0,018 | -0,010 | -0,0625 |
-М | -85.68 | -5.14 | +36 | - | +30.8 | -17 | -117 |
Нулевые точки эпюры положительных моментов располагаются на расстоянии 0,1 l1= 0,45 м от грани левой опоры и 0,125 l1 = 0,56 м от грани правой опоры. Огибающая эпюра моментов приведена на рис. 11. Под ней построена эпюра поперечных сил для крайнего пролета.
Ординаты эпюры Мult вычисляются через площади фактически принятой ранее арматуры и откладываются на том же чертеже.
На положительные моменты
На наибольший положительный момент M1 принята арматура 2Æ20 и 2Æ16 А500 с Аs = 1030мм2.
мм 435 × 1030 × (385 – 0,5 × 130) = 143.4 кН×мВвиду убывания положительного момента к опорам, часть арматуры можно не доводить до опор, оборвав в пролете. Рекомендуется до опор доводить не менее 50% расчетной площади арматуры. Примем, что до опор доводится 2Ø20 A500 с АS = 628 мм2. Момент Мult, отвечающий этой арматуре, получим пропорционально ее площади:
мм 435 × 628 × (385 – 0,5 × 79) = 94.4 кН×мНа отрицательные опорные моменты:
На момент МA принята арматура 2Ø20 А500 с АS=628 мм2.
мм, 435 × 628 × (385 – 0,5 × 79) = 94.4 кН×мНа момент МB = МC принята арматура 2Ø25 А500 с АS=982 мм2.
мм 435 × 982 × (385 – 0,5 × 123.8) = 138 кН×мНа отрицательные пролетные моменты
На момент М4 принята арматура 2Ø8 А500 с АS=101 мм2.
мм 435 × 101 × (415 – 0,5 × 12.7) = 17.95 кН×мОбрываемые пролетные и опорные стержни заводятся за место теоретического обрыва на величину W. Расстояние от опорных стержней до мест теоретического обрыва стержней а определяется из эпюры графически.
В сечении 2 каркаса ( dsw= 6 мм; Аsw1=28.3 мм2; Аsw=56.6 мм2; Rsw= 300 МПа)
H/мм.Значения W будут (см. рис.11): для пролетных стержней 2Æ25 A- II (А300)
слева:
407 мм < 20d= 500 ммсправа:
512 мм > 20d= 500 мм;для надопорных стержней слева 2Ø28 А300:
504 мм < 20d= 560 ммсправа 2Æ36 A-II (А300)
629 мм < 20d= 720 ммПринято W1= 500 мм; W2 = 550 мм; W3 = 600 мм; W4 = 750 мм.
Сетка колонн
мВысота этажей между отметками чистого пола – 3.3 м. Нормативное значение временной нагрузки на междуэтажные перекрытия 8.5 кH/м2, расчетное значение снеговой нагрузки на покрытие – 2.4 кH/м2 (для г.Ярославля). Кратковременная нагрузка превышает 10% от всей временной. Коэффициент снижения ее на междуэтажных перекрытиях к2=0,8. Коэффициент надежности по назначению здания gn=0,95.
Основные размеры ребристых плит и ригелей перекрытий и покрытия принимаются по предыдущему расчету. Толщина пола – 100 мм. Бетон тяжелый класса B25, продольная арматура – класса A400, поперечная арматура – класса A240.
Расчет колонны на сжатие
Полная грузовая площадь для одной внутренней колонны составит
5.7×6,7=38.19 м2.Подсчет нагрузок на грузовую площадь сведен в таблицу.
Нагрузку от собственного веса конструкций покрытия и междуэтажных конструкций принимаем по данным предыдущего расчёта.
Колонну принимаем сечением 400×400 (мм). Собственный вес колонны длиной 3.3 м с учетом веса двухсторонней консоли будет:
Нормативный – 0,95[0,4×0,4×3.3 +(0,3×0,45+0,3×0,3) ×0,4] ×25 = 14.68кН.
Расчетный – 1,1×14.68 = 16.15 кН.
Расчет колонны по прочности на сжатие производим для двух схем загружения:
За расчетное принимаем верхнее сечение колонны 1-го этажа, расположенное на уровне оси ригеля перекрытия этого этажа. Расчет выполняется на комбинацию усилий Mmax-N, отвечающую загружению временной нагрузкой одного из примыкающих к колонне пролетов ригеля перекрытия 1-го этажа и сплошному загружению остальных перекрытий и покрытия.