Температура наружного воздуха, соответствующая точке излома графиков температур воды - tн', делит отопительный период на два диапазона с различными режимами регулирования:
в диапазоне I с интервалом температур наружного воздуха от +8 °С до tн' осуществляется групповое или местное регулирование, задачей которого является недопущение " перегрева " систем отопления и бесполезных потерь теплоты;
в диапазонах II и III с интервалом температур наружного воздуха от tн' до to осуществляется центральное качественное регулирование.
1.4 Определение расчетных расходов теплоносителя
Расчетный расход сетевой воды для определения диаметров труб в водяных тепловых сетях при качественном регулировании отпуска теплоты следует определять отдельно для отопления, вентиляции и горячего водоснабжения по формулам:
а) на отопление
, (1.10)б) на вентиляцию
, (1.11)в) на горячее водоснабжение в открытых системах теплоснабжения:
средний
, (1.12)Максимальный
, (1.13)г) на горячее водоснабжение в закрытых системах теплоснабжения:
средний, при двухступенчатых схемах присоединения водоподогревателей
, (1.14)максимальный, при двухступенчатых схемах присоединения водоподогревателей
, (1.15)Суммарные расчетные расходы сетевой воды, кг/ч, в двухтрубных тепловых сетях в открытых и закрытых системах теплоснабжения при качественном регулировании отпуска теплоты следует определять по формуле
(1.16)Коэффициент K3, учитывающий долю среднего расхода воды на горячее водоснабжение при регулировании по нагрузке отопления, принят в размере 1,2 для закрытой системы теплоснабжения с общей нагрузкой менее 100 МВт.
Результаты расчетов по формулам (1.10-1.18) приведены в приложении В.
1.5 Гидравлический расчет трубопроводов тепловых сетей
Основной задачей гидравлического расчета является определение диаметров трубопроводов, а также потерь давления на участках тепловых сетей. По результатам гидравлических расчетов разрабатывают гидравлические режимы систем теплоснабжения, подбирают сетевые и подпиточные насосы, авторегуляторы, дроссельные устройства, оборудование тепловых пунктов.
При движении теплоносителя по трубам полные потери давления DР складываются из потерь давления на трение DРл и потерь давления в местных сопротивлениях DРм :
DР = DРл + DРм (1.19)
Потери давления на трение DРл определяют по формуле:
DРл = R * L (1.20)
где R - удельные потери давления, Па / м2, определяемые по формуле:
(1.21)где l - коэффициент гидравлического трения; d - внутренний диаметр трубопровода, м; r - плотность теплоносителя, кг / м3; w - скорость движения теплоносителя, м/c; L - длина трубопровода, м.
Потери давления в местных сопротивлениях DРм определяют по формуле:
(1.22)где åx - сумма коэффициентов местных сопротивлений.
Потери давления в местных сопротивлениях могут быть также определены по следующей формуле:
DРм = R Lэ (1.23)
где Lэ - эквивалентная длина местных сопротивлений, которую определяют по формуле.
(1.24)Для проведения гидравлического расчета составлена расчетная схема (Рис1.5)
Гидравлический расчет выполнен по таблицам [6] и приводится в приложении В.
Потери давления теплосети от ЦТК 337/03 до квартальной котельной, расположенной по улице Ясной составили 44,14 м в. ст. (при располагаемом напоре на врезке 47 м в. ст.). Общая протяженность теплосети составила 2723 м. Располагаемое давление перед квартальной котельной составило 2,86 м. в. ст.
Потери давления теплосети от квартальной котельной до Руднева 33 составили 23,42 м в. ст. (при располагаемом напоре 30 м. в. ст.). Общая протяженность теплосети составила 1397 м. Располагаемое давление у последнего потребителя составило 6,58 м в. ст.
Потери давления на реконструируемом участке теплосети (Руднева 33-45) при замене диаметров трубопроводов на dу=150 мм составили 2,35 м. в. ст.
1.6 Разработка гидравлических режимов
Для изучения режима давлений в тепловых сетях и местных системах зданий широко используются пьезометрические графики.
При подключении к существующей тепловой сети исходными данными для построения пьезометрических графиков являются:
перепад давлений в точке подключения;
потери напора в рассматриваемом участке (по данным гидравлического расчета);
профиль теплосети, с указанием отметок трассы.
Для пьезометра теплосети от врезки ЦТК 337/03 до котельной №3 (пьезометр №1):
Р1= 82 м, Р2= 35 м, общие потери напора по данным гидравлического расчета DР= 44,14 м.
Для пьезометра теплосети от котельной №3 до Руднева33 (пьезометр №2):
Р1= 60 м, Р2= 30 м, общие потери напора по данным гидравлического расчета DР= 23,42 м на существующее положение и DР= 17,65 м при реконструкции концевых участков.
Последовательность построения:
Наносится продольный профиль теплотрассы с соответствующим горизонтальным и вертикальным масштабом (пьезометр №1 – Мг 1:5000, Мв 1:500; пьезометр №2 – Мг 1:2000, Мв 1:500).
Проставляются абсолютные отметки трассы
Наносятся перепады давлений в точках подключения
По данным гидравлического расчета наносятся линии потерь давления в обратном и подающем трубопроводах
Наносится линия статического давления (давление при статическом режиме не должно превышать 60 м - для систем с чугунными отопительными приборами; должно превышать самого высокого потребителя на 5 м – из условий заполнения системы; должно быть в высшей точке трассы не менее 15 м - из условий невскипания воды в подающем трубопроводе)
Для пьезометра №1 статическое давление в абсолютной отметке Рs= 120 м, для пьезометра №2 Рs= 100 м.
При анализе построенных пьезометрических графиков обнаружено, что располагаемый напор в конце трассы (пьезометр №1) составляет 2,86 м. Такой напор явно недостаточен для нормальной работы ЦТП в котельной №3. Решения по гидравлическому режиму ЦТП рассмотрены отдельно во второй главе дипломного проекта.
При анализе пьезометра №2, для увеличения гидравлической устойчивости было решено увеличить располагаемый напор на концевых участках трассы путем увеличения диаметров трубопроводов до dу=150 мм (реконструкция по Руднева 45-33). Проведен повторный гидравлический расчет с учетом замены трубопроводов. Результаты расчета представлены на пьезометре №2 (синим цветом). Располагаемый напор у последнего потребителя составил 12,35 м.
1.7 Расчет дроссельных устройств
При присоединении потребителей к тепловой сети по зависимой безэлеваторной схеме необходимо рассчитать диаметры дроссельных диафрагм, гасящих остаточное давление.
Диаметр отверстий дроссельных диафрагм, d, мм, определяется по формуле [18]:
(1.25)где G – расход сетевой воды, т/ч;
H – напор, гасимый дроссельной диафрагмой, м
Расчет по формуле (1.25) сведен в таблицу 1.5.
Таблица 1.5 – Расчет дроссельных диафрагм
Абонент | Расход сетевой воды (параметры 95-70С), т/ч | Располагаемый напор, м | Напор, гасимый диафрагмой, м | Диаметр отверстия диафрагмы, мм |
Кирова 9 | 2,89 | 28,5 | 26,5 | 7,4 |
Кирова 11 | 4,05 | 27,8 | 25,8 | 8,8 |
Кирова 13 | 3,87 | 26,9 | 24,9 | 8,6 |
Кирова 17 | 1,2 | 25,5 | 23,5 | 4,9 |
Кирова 21 | 3,96 | 24 | 22 | 9,0 |
Федеративная 3 | 2,52 | 24,9 | 22,9 | 7,1 |
Руднева 53 | 3,24 | 19,5 | 17,5 | 8,6 |
Руднева 51 | 2,88 | 18,5 | 16,5 | 8,2 |
Руднева 49 | 2,96 | 17,3 | 15,3 | 8,4 |
Руднева 47 | 4,42 | 16,5 | 14,5 | 10,4 |
Руднева 45 | 7,91 | 14,7 | 12,7 | 14,4 |
Руднева 43 | 3,04 | 13,7 | 11,7 | 9,1 |
Руднева 41 | 3,4 | 13,34 | 11,34 | 9,6 |
Руднева 39 | 3,28 | 12,99 | 10,99 | 9,5 |
Руднева 37 | 7,32 | 12,58 | 10,58 | 14,4 |
Руднева 35 | 9,06 | 12,39 | 10,39 | 16,0 |
Руднева 33 | 4,55 | 12,35 | 10,35 | 11,4 |
Полученные диаметры диафрагм удовлетворяют требованиям [18] (не менее 3 мм).
1.8 Расчет и подбор оборудования для реконструируемого участка
1.8.1 Расчет толщины тепловой изоляции
Тепловой расчет проводится с целью определения толщины тепловой изоляции при данном виде прокладки и известном коэффициенте теплопроводности материала по нормируемой плотности теплового потока.
Расчет произведен по методике, приведенной [8]:
1) Суммарное термическое сопротивление слоя изоляции и других дополнительных термических сопротивлений на пути теплового потока, для подающего и обратного трубопровода:
(1.26)где qe - нормированная линейная плотность теплового потока, Вт/м, принимаемая по приложениям 4-8 [8];