где Z – коэффициент пропорциональности:
· для водяных сетей Z=0,02;
· для паровых сетей Z=0,1.
Тогда уравнение (1.2.6) примет следующий вид:
(1.2.9.)А материальная характеристика примет вид:
(1.2.10.)Обозначим через М0 материальную характеристику сети при некотором фиксированном значении удельной линейной потери давления R0.
Согласно (1.2.10) можно записать при ρ0=ρ
(1.2.11.)Откуда
М=Мо
(1.2.12.)С учетом (1.2.5.) и (1.2.12) переменная часть капитальных вложений в тепловую сеть будет
К´т.с =в·Мо
(1.2.13.)Стоимость электроэнергии, затрачиваемой на перекачку теплоносителя равна:
, (1.2.14.)где τ – годовая продолжительность эксплуатации тепловой сети, ч/год;
η – КПД сетевых насосов;
Сз – районные замыкающие затраты на электроэнергию, руб/(Вт ч).
Найдем стоимость тепла, теряемого трубопроводами :
Итп=Зт·τ·k·π·М0
·(1+β) , (1.2.15.)где Зт – районные замыкающие затраты на тепловую энергию, руб/Втч;
k – коэффициент теплопередачи трубопроводов тепловой сети, Вт/м²к. Определяется тепло техническим расчетом;
t
- среднегодовая температура теплоносителя в трубопроводах, ºС;t
- средняя за период эксплуатации тепловой сети температура окружающей среды, ºС;β – коэффициент, учитывающий теплопотери через неизолированные участки трубопровода.
Используя (1.2.1), (1.2.13), (1.2.14) и (1.2.15), запишем следующее выражение для целевой функции:
(1.2.16)
Для нахождения оптимальной величины удельной линейной потери давления продифференцируем функцию (1.2.16) и приравняем полученное выражение к нулю:
(1.2.17)откуда после некоторых преобразований
R
(1.2.18.)где
(1.2.19)Методика экономического обоснования транзитной тепловой сети сводится к следующим этапам расчета. При заданной величине R0 на основании гидравлического расчета определяется диаметр сети d0 и ее материальная характеристика М0. Затем выявляется оптимальное значение удельной линейной потери давления Ropt и повторным расчетом находится оптимальный диаметр dopt.
Методика расчета транзитного теплопровода применима и для тупиковой распределительной сети.
Оптимальное значение линейной потери давления на головной магистрали тепловой сети Ropt находится по уравнениям (1.2.18) и (1.2.19) с помощью подстановки:
;где
- суммарная протяженность участков головной магистрали, считая подающую и обратную линию теплопровода, м;n – общее количество участков магистрали;
di,0 – диаметр i-го участка, рассчитанный при заданной величине удельной линейной потери давления R0, м;
li - длина i-го участка, м.
G=55кг/с
G=30кг/с
G=70кг/с
Рис 1. Расчетная схема тепловой сети.
Исходные данные.
1. Доля годовых отчислений на реновацию, ремонт и обслуживание тепловой сети
=0,075 1/год.2. КПД сетевых насосов η=0,6.
3. Плотность теплоносителя ρ=970 кг/м³.
4. Разность температуры
=40 ºС.5. Годовая продолжительность эксплуатации тепловой сети τ=6000 ч/год.
6. Удельная стоимость электроэнергии Сэ=58·10
руб/(Вт ч).7. Районные замыкающие затраты на тепловую энергию Зт=76·10
руб/(Вт ч).8. Стоимостной коэффициент в=3990 руб/м².
9. Коэффициент теплопередачи трубопроводов тепловой сети К=1,25 Вт/м²к.
10. Коэффициент учитывающий теплопотери через неизолированные участки трубопровода, β=0,2.
11. Коэффициент эффективности капитальных вложений Е=0,12 1/год.
Общая длина магистрали.
l=l1+l2+l3=650+550+750=1950 м.
Гидравлическим расчетом Rо=80 кПа , получим следующие диаметры сети по участкам: d1,0=377×9 мм, d2,0=273×7 мм, d3,0=194×5мм.
Материальная характеристика сети.
Мо=0,377·650+0,273·550+0,194·750=540,7 м².
Определим долю потери давления в местных сопротивлениях: m=Z
Определим оптимальное значение удельной линейной потери давления
R
Определение оптимальной толщины тепловой изоляции трубопроводов тепловой сети.
С увеличением толщины изоляции возрастают затраты в сооружение и эксплуатацию теплоизолированного трубопровода. Вместе с тем, снижается теплопотери, а значит и годовая стоимость теряемой теплоты.
Задача сводится к минимизации функции следующего вида:
З=(Ен+φ)Киз+Итп , (1.3.1)
где Ен – коэффициент эффективности кап вложений 1/год;
φ – доля годовых отчислений на эксплуатацию тепловой изоляции 1/год;
Киз – капитальные вложения в теплоизоляцию 1/год;
Итп – стоимость теплопотерь, руб/год.
Решение задачи рассмотрим на примере двухтрубного подземного теплопровода при бесканальной прокладке.
Капитальные вложения в тепловую изоляцию 1м двухтрубного теплопровода определяется по формуле:
, (1.3.2)где Сиз – удельная стоимость тепловой изоляции «в деле» , руб/год;
Vиз – объем тепловой изоляции, м;
d – диаметр трубопровода, м;
δиз – толщина тепловой изоляции, м.
Годовая стоимость тепла, теряемого теплопроводом, определяется по формуле
Ит.п = (qп + qо) τ Ст (1+β) , (1.3.3)
где qп , qо - удельные потери тепла 1 м подающего и обратного трубопроводов тепловой сети, Вт/м;
Ст – районные замыкающие затраты на тепловую энергию, руб/(Вт ч);
τ – годовая продолжительность эксплуатации тепловой сети, ч/год;
β - коэффициент, учитывающий теплопотери через не изолированные участки трубопровода.
Удельные теплопотери трубопроводами находятся
, (1.3.4) , (1.3.5)где
, -среднегодовая температура теплоносителя в подающей и обратной магистрали, ˚С; - средняя температура грунта на глубите заложения трубопроводов, принимаются по климатическим справочникам - 5ºС;Rп, Rо, - термическое сопротивления подающего и обратного трубопроводов тепловой сети, м К/Вт;
Rинт - дополнительное термическое сопротивление, учитывающее тепловую интерференцию теплопроводов, м К/Вт.
Термические сопротивления трубопроводов определяются по формулам:
, (1.3.6) , (1.3.7)где
, - теплопроводность теплоизоляции и грунта, Вт/(м К);h – глубина заложения трубопровода , м;
s – шаг между трубами, м.
Подставляя вышеприведенные выражения в целевую функцию получим
(1.3.8)Задаваясь рядом значений
1, 2, … n вычислим затраты З1, З2, …Зn . Условию З=min соответствует оптимальная толщина тепловой изоляции .