Смекни!
smekni.com

Строительная теплофизика (стр. 1 из 9)

Содержание

1. Введение

1.1 Цель и задачи курса

1.2 Предмет курса

1.3 Здание как единая энергетическая система

2. Тепловлагопередача через наружные ограждения

2.1 Основы теплопередачи в здании

2.1.1 Теплопроводность

2.1.2 Конвекция

2.1.3 Излучение

2.1.4 Термическое сопротивление воздушной прослойки

2.1.5 Коэффициенты теплоотдачи на внутренней и наружной поверхностях

2.1.6 Теплопередача через многослойную стенку

2.1.7 Приведенное сопротивление теплопередаче

2.1.8 Распределение температуры по сечению ограждения

2.2 Влажностный режим ограждающих конструкций

2.2.1 Причины появления влаги в ограждениях

2.2.2 Отрицательные последствия увлажнения наружных ограждений

2.2.3 Связь влаги со строительными материалами

2.2.4 Влажный воздух

2.2.5 Влажность материала

2.2.6 Сорбция и десорбция

2.2.7 Паропроницаемость ограждений

2.3 Воздухопроницаемость наружных ограждений

2.3.1 Основные положения

2.3.2 Разность давлений на наружной и внутренней поверхности ограждений

2.3.3 Воздухопроницаемость строительных материалов

1. Введение

1.1 Цель и задачи курса

Учебное пособие "Лекции по строительной теплофизику" предназначено для студентов, изучающих в рамках специальности "Теплогазоснабжение и вентиляция" одноименную дисциплину. Содержание пособия соответствует программе дисциплины и в значительной мере ориентировано на курс лекций, читаемый в МГСУ. Цель курса - с помощью системного изложения сформировать подход к физической сущности тепло-воздушного и влажностного режимов здания как к основе изучения технологии обеспечения микроклимата. В задачи дисциплины входит: формирование общего представления о теплотехнической роли внешней оболочки здания и работе инженерных систем, обеспечивающих его микроклимат, как о единой энергетической системе; обучение студента умению использовать теоретические положения и методы расчета в дальнейшей профессиональной работе, то есть при проектировании и эксплуатации систем обеспечения микроклимата здания. В результате освоения дисциплины студент должен знать понятия, определяющие тепловой, воздушный и влажностный режимы здания, включая климатологическую и микроклиматическую терминологию; законы передачи теплоты, влаги, воздуха в материалах, конструкциях и элементах систем здания и величины, определяющие тепловые и влажностные процессы; нормативы теплозащиты наружных ограждающих конструкций, нормирование параметров наружной и внутренней среды здания. Студент должен уметь формулировать и решать задачи передачи теплоты и массы во всех элементах здания и демонстрировать способность и готовность вести поверочный расчет защитных свойств наружных ограждений, и расчет коэффициентов лучистого и конвективного теплообмена на поверхностях, обращенных в помещение.

1.2 Предмет курса

Строительная теплофизика изучает процессы передачи теплоты, переноса влаги, фильтрации воздуха применительно к строительству.

В основном строительная теплофизика изучает процессы, происходящие на поверхностях и в толще ограждающих конструкций здания. Причем, по установившейся традиции и для краткости, часто ограждающие конструкции здания называются просто ограждениями. Причем, значительное место в строительной теплофизике отведено наружным ограждениям, которые отделяют отапливаемые помещения от наружной среды или от неотапливаемых помещений (неотапливаемых техподполий, подвалов, чердаков, тамбуров и т.п.)

Не смотря на то, что наука относится в основном к ограждающим конструкциям здания, для специалистов по отоплению и вентиляции строительная теплофизика очень важна. Дело в том, что, во-первых, от теплотехнических качеств наружных ограждений зависят теплопотери здания, влияющие на мощность отопительных систем и расход теплоты ими за отопительный период. Во-вторых, влажностный режим наружных ограждений влияет на их теплозащиту, а, следовательно, на мощность систем, обеспечивающих заданный микроклимат здания. В-третьих, коэффициенты теплообмена на внутренней поверхности наружных ограждений играют роль не только в оценке общего приведенного сопротивления теплопередаче конструкции, но и в оценке температуры на внутренней поверхности этого ограждения. В-четвертых, "плотные" окна имеют вполне определенное сопротивление воздухопроницанию. И при "плотных" окнах в малоэтажных зданиях до 5 этажей инфильтрацией в расчете теплопотерь можно пренебречь, а в более высоких на нижних этажах она уже будет ощутимой. В-пятых, от воздушного режима здания зависит не только наличие или отсутствие инфильтрации, но и работа систем вентиляции, особенно естественных. В-шестых, радиационная температура внутренних поверхностей наружных и внутренних ограждений, важнейшая составляющая оценки микроклимата помещений, в основном является производной от теплозащиты здания. В-седьмых, теплоустойчивость ограждений и помещений влияет на постоянство температуры в помещениях при переменных тепловых воздействиях на них, особенно в современных зданиях, в которых воздухообмен близок к минимальной норме наружного воздуха.

В проектировании и теплотехнической оценке наружных ограждений имеется ряд особенностей. Утепление здания - дорогостоящая и ответственная составляющая современного строительства, поэтому важно обоснованно принимать толщину утеплителя. Специфика сегодняшнего теплотехнического расчета наружных ограждений [31] связана:

во-первых, с повысившимися требованиями к теплозащите зданий;

во-вторых, с необходимостью учитывать роль эффективных утеплителей в ограждающих конструкциях, коэффициенты теплопроводности которых настолько малы, что требуют очень аккуратного отношения к подтверждению их величин в эксплуатационных условиях;

в-третьих, с тем, что в ограждениях появились различные связи, сложные примыкания одного ограждения к другому, снижающие сопротивление теплопередаче ограждения. Оценка влияния различного рода теплопроводных включений на теплозащиту зданий требует опоры на специальные подробные исследования.

1.3 Здание как единая энергетическая система

Совокупность всех факторов и процессов (внешних и внутренних воздействий), влияющих на формирование теплового микроклимата помещений, называется тепловым режимом здания.

Ограждения не только защищают помещение от наружной среды, но и обмениваются с ним теплотой и влагой, пропускают воздух сквозь себя как внутрь, так и наружу. Задача поддержания заданного теплового режима помещений здания (поддержания на необходимом уровне температуры и влажности воздуха, его подвижности, радиационной температуры помещения) возлагается на инженерные системы отопления, вентиляции и кондиционирования воздуха. Однако определение тепловой мощности и режима работы этих систем невозможно без учета влияния тепловлагозащитных и теплоинерционных свойств ограждений. Поэтому система кондиционирования микроклимата помещений включает в себя все инженерные средства, обеспечивающие заданный микроклимат обслуживаемых помещений: ограждающие конструкции здания и инженерные системы отопления, вентиляции и кондиционирования воздуха. Таким образом, современное здание - сложная взаимосвязанная система тепломассообмена - единая энергетическая система.

Вопросы для самоконтроля

1 Что изучается в строительной теплофизике?

2. Что такое ограждение?

3. Что такое наружное ограждение?

4. Чем важна строительная теплофизика для специалиста по отоплению и вентиляции?

5. В чем специфика теплотехнического расчета современных зданий?

6. Что такое тепловой режим здания?

7. Какую роль играют ограждающие конструкции в тепловом режиме здания?

8. Какие параметры внутренней среды поддерживаются системами отопления и вентиляции?

9. Что такое система кондиционирования микроклимата здания?

10. Почему здание считается единой энергетической системой?

2. Тепловлагопередача через наружные ограждения

2.1 Основы теплопередачи в здании

Перемещение теплоты всегда происходит от более теплой среды к более холодной. Процесс переноса теплоты из одной точки пространства в другую за счет разности температуры называется теплопередачей и является собирательным, так как включает в себя три элементарных вида теплообмена: теплопроводность (кондукцию), конвекцию и излучение. Таким образом, потенциалом переноса теплоты является разность температуры.

2.1.1 Теплопроводность

Теплопроводность - вид передачи теплоты между неподвижными частицами твердого, жидкого или газообразными вещества. Таким образом, теплопроводность - это теплообмен между частицами или элементами структуры материальной среды, находящимися в непосредственном соприкосновении друг с другом. При изучении теплопроводности вещество рассматривается как сплошная масса, его молекулярное строение игнорируется. В чистом виде теплопроводность встречается только в твердых телах, так как в жидких и газообразных средах практически невозможно обеспечить неподвижность вещества.

Большинство строительных материалов являются пористыми телами. В порах находится воздух, имеющий возможность двигаться, то есть переносить теплоту конвекцией. Считается, что конвективной составляющей теплопроводности строительных материалов можно пренебречь ввиду ее малости. Внутри поры между поверхностями ее стенок происходит лучистый теплообмен. Передача теплоты излучением в порах материалов определяется главным образом размером пор, потому что чем больше поры, тем больше разность температуры на ее стенках. При рассмотрении теплопроводности характеристики этого процесса относят к общей массе вещества: скелету и порам совместно.

Ограждающие конструкции здания, как правило, является плоско-параллельными стенками, теплоперенос в которых осуществляется в одном направлении. Кроме того, обычно при теплотехнических расчетах наружных ограждающих конструкций принимается, что теплопередача происходит при стационарных тепловых условиях, то есть при постоянстве во времени всех характеристик процесса: теплового потока, температуры в каждой точке, теплофизических характеристик строительных материалов. Поэтому важно рассмотреть процесс одномерной стационарной теплопроводности в однородном материале, который описывается уравнением Фурье: