- подкрановая часть
.Временные нагрузки.
Снеговая нагрузка. Район строительства – г. Липецк, относящийся к III району по весу снегового покрова, для которого
(см. прил. 16). Расчетная снеговая нагрузка при :- на крайние колонны;
кН;- на средние колонны
кН.Крановая нагрузка. Вес поднимаемого груза
. Пролет крана21-2•0,75=19,5 м. Согласно прил. 15 база крана М=5600 мм, расстояние между колесами К=4400 мм, вес тележки Gn=60 кН, Fn,max=155 кН, Fn,min=64 кН. Расчетное максимальное давление колеса крана при
: кН; кН.Расчетная поперечная тормозная сила на одно колесо:
.Вертикальная крановая нагрузка на колонны от двух сближенных кранов с коэффициентом сочетаний
: кН; кН.где:
сумма ординат линий влияния давления двух подкрановых балок на колонну (рис. 4,б).
Вертикальная нагрузка от четырех кранов на среднюю колонну с коэффициентом сочетаний
равна: кН;на крайние колонны:
кН;Горизонтальная крановая нагрузка от 2-х кранов при поперечном торможении:
.Горизонтальная сила поперечного торможения приложена к колонне на уровне верха подкрановой балки на отметке 9,05 м. Относительное расстояние по вертикали от верха колонны до точки приложения тормозной силы : Н=12,00-8,05=3,95 :
- для крайних колонн
;- для средних колонн
.Ветровая нагрузка. г. Липецк расположен в III районе по ветровому давлению, для которого
Н/м2 (прил. 17). Для местности типа В коэффициент , учитывающий изменение ветрового давления по высоте здания равен (прил. 18):на высоте 5 м---0,5;
то же 10 м ------0,65;
то же 20 м ------0,85;
то же 40 м -----1,1;
На высоте 12,0 м в соответствии с линейной интерполяцией (рис. 5):
На уровне парапета (отм. 13,2м.):
.На уровне верха покрытия (отм. 14,90м.):
Переменное по высоте ветровое давление заменим равномерно распределенным, эквивалентным по моменту в заделке консольной стойки длиной 12,0 м:
.При условии
и значение аэродинамического коэффициента для наружных стен согласно приложения 4 [1] принято:- с наветренной стороны
, с подветренной (здесь и L соответственно длина и ширина здания). Расчетная равномерно распределенная ветровая нагрузка на колонны до отметки Н=12,0 м при коэффициенте надежности по нагрузке :- с наветренной стороны
;- с подветренной стороны
.Расчетная сосредоточенная ветровая нагрузка между отметками 12,0м и 14,9м:
Рис. 5. Распределение ветровой нагрузки по высоте здания.
2. СТАТИЧЕСКИЙ РАСЧЕТ ПОПЕРЕЧНОЙ РАМЫ
Расчет рамы может выполняться одним из методов строительной механики, причем для сложных рам общего вида – с помощью ЭВМ.
Между тем, в большинстве одноэтажных промышленных зданий ригели располагаются на одном уровне, а их изгибная жесткость в своей плоскости значительно превосходит жесткость колонн и поэтому может быть принята равной EJ=Ґ. В этом случае наиболее просто расчет рам производится методом перемещений. Основную систему получим введением связи, препятствующей горизонтальному смещению верха колонн (рис.7.а.).
Определение усилий в стойках рамы производим в следующем порядке:
– по заданным в п.1.2. размерам сечений колонн определяем их жесткость как для бетонных сечений в предположении упругой работы материала;
– верхним концам колонн даем смещения
и по формуле приложения 20 находим реакцию каждой колонны и рамы в целом где n – число колонн поперечной рамы;– по формулам приложения 20 определяем реакции
верхних опор стоек рамы в основной системе метода перемещений и суммарную реакцию в уровне верха колонн для каждого вида нагружения;–для каждого из нагружений (постоянная, снеговая, ветровая, комплекс крановых нагрузок) составляем каноническое уравнение метода перемещений, выражающее равенство нулю усилий во введенной (фиктивной) связи
, (2.1)и находим значение
; здесь – коэффициент, учитывающий пространственную работу каркаса здания.При действии на температурный блок постоянной, снеговой и ветровой нагрузок все рамы одинаково вовлекаются в работу, пространственный характер деформирования не проявляется и поэтому принимают
. Крановая же нагрузка приложена лишь к нескольким рамам блока, но благодаря жесткому диску покрытия в работу включаются все остальные рамы. Именно в этом и проявляется пространственная работа блока рам. Величина для случая действия на раму крановой (локально приложенной) нагрузки может быть найдена по приближенной формуле: , (2.2)где:
– общее число поперечников в температурном блоке; – расстояние от оси симметрии блока до каждого из поперечников, a– то же для второй от торца блока поперечной рамы (наиболее нагруженной); – коэффициент, учитывающий податливость соединений плит покрытия; для сборных покрытий может быть принят равным 0,7; =1, если в пролете имеется только 1 кран, в противном случае =0,7;– для каждой стойки при данном нагружении вычисляем упругую реакцию в уровне верха:
(2.3)– определяем изгибающие моменты M, продольную N и поперечную Q силы в каждой колонне как в консольной стойке от действия упругой реакции
и внешних нагрузок.