- подкрановая часть
Временные нагрузки.
Снеговая нагрузка. Район строительства – г. Липецк, относящийся к III району по весу снегового покрова, для которого
- на крайние колонны;
- на средние колонны
Крановая нагрузка. Вес поднимаемого груза
21-2•0,75=19,5 м. Согласно прил. 15 база крана М=5600 мм, расстояние между колесами К=4400 мм, вес тележки Gn=60 кН, Fn,max=155 кН, Fn,min=64 кН. Расчетное максимальное давление колеса крана при
Расчетная поперечная тормозная сила на одно колесо:
Вертикальная крановая нагрузка на колонны от двух сближенных кранов с коэффициентом сочетаний
где:
сумма ординат линий влияния давления двух подкрановых балок на колонну (рис. 4,б).
Вертикальная нагрузка от четырех кранов на среднюю колонну с коэффициентом сочетаний
на крайние колонны:
Горизонтальная крановая нагрузка от 2-х кранов при поперечном торможении:
Горизонтальная сила поперечного торможения приложена к колонне на уровне верха подкрановой балки на отметке 9,05 м. Относительное расстояние по вертикали от верха колонны до точки приложения тормозной силы : Н=12,00-8,05=3,95 :
- для крайних колонн
- для средних колонн
Ветровая нагрузка. г. Липецк расположен в III районе по ветровому давлению, для которого
на высоте 5 м---0,5;
то же 10 м ------0,65;
то же 20 м ------0,85;
то же 40 м -----1,1;
На высоте 12,0 м в соответствии с линейной интерполяцией (рис. 5):
На уровне парапета (отм. 13,2м.):
На уровне верха покрытия (отм. 14,90м.):
Переменное по высоте ветровое давление заменим равномерно распределенным, эквивалентным по моменту в заделке консольной стойки длиной 12,0 м:
При условии
- с наветренной стороны
- с наветренной стороны
- с подветренной стороны
Расчетная сосредоточенная ветровая нагрузка между отметками 12,0м и 14,9м:
Рис. 5. Распределение ветровой нагрузки по высоте здания.
2. СТАТИЧЕСКИЙ РАСЧЕТ ПОПЕРЕЧНОЙ РАМЫ
Расчет рамы может выполняться одним из методов строительной механики, причем для сложных рам общего вида – с помощью ЭВМ.
Между тем, в большинстве одноэтажных промышленных зданий ригели располагаются на одном уровне, а их изгибная жесткость в своей плоскости значительно превосходит жесткость колонн и поэтому может быть принята равной EJ=Ґ. В этом случае наиболее просто расчет рам производится методом перемещений. Основную систему получим введением связи, препятствующей горизонтальному смещению верха колонн (рис.7.а.).
Определение усилий в стойках рамы производим в следующем порядке:
– по заданным в п.1.2. размерам сечений колонн определяем их жесткость как для бетонных сечений в предположении упругой работы материала;
– верхним концам колонн даем смещения
– по формулам приложения 20 определяем реакции
–для каждого из нагружений (постоянная, снеговая, ветровая, комплекс крановых нагрузок) составляем каноническое уравнение метода перемещений, выражающее равенство нулю усилий во введенной (фиктивной) связи
и находим значение
При действии на температурный блок постоянной, снеговой и ветровой нагрузок все рамы одинаково вовлекаются в работу, пространственный характер деформирования не проявляется и поэтому принимают
где:
– для каждой стойки при данном нагружении вычисляем упругую реакцию в уровне верха:
– определяем изгибающие моменты M, продольную N и поперечную Q силы в каждой колонне как в консольной стойке от действия упругой реакции