По таблице 7.6. (с. 158 [I]) при δ = 1,9; a/h0 = 0,9 предельное значение σм/σ = 0,109
Расчетное значение σм/σ = 0,86 > 0,109
σкропределяем по формуле:
где скр = 33,1 по табл. 7.4 (с. 155 [I]) при δ = 1,9
Определяем σмкр
где
с1 = 11 по табл. 7.5 (с. 156 [I]) при δ = 1,9
a1/2hст = 157,9/2·166 = 0,47
Подставляем все значения в формулу
Устойчивость стенки обеспечена и постановка ребер жесткости на расстоянии а1 = 157,9 см возможна.
Определяем размеры ребер жесткости ширина bp = hст/30+40 = 1660/30 + 40 = 95 мм
Примем bp = 120 мм
толщина
Примем tp = 7
9.Расчет монтажного стыка главной балки
Рисунок 6 – Схема опорной части главной балки
Стык делаем в середине пролета балки, где М = 4781 кН·м и Q = 0.
Стык осуществляем высокопрочными болтами d = 20 мм из стали «селект», имеющий по таблице 6.2
; обработка поверхности газопламенная. Несущая способность болта, имеющего две плоскости трения:где
γб = 0,85:т. к. разница в номинальных диаметрах отверстия и болта больше 1 мм;
М= 0,42 и γн = 1,02;
Принимая способность регулирования натяжения болта по углу закручивания, k = 2 – две плоскости трения.
Стык поясов. Каждый пояс балки перекрываем тремя накладками сечениями 500×12 мм и 2×220×12 мм, общей площадью сечения
An= 1,2·(50 + 2·22) = 112,8 см2 > An = 100 см2
Усилие в поясе определяем по формуле:
Mn = MIn/I = 4781·1385704/1792391 = 3696 кН·м
Nn = Mn/h0 = 3696/1,68 = 2200 кН
где I, In, h0 – из расчета главной балки
Количество болтов для прикрепления накладок рассчитываем по формуле:
n = Nn/QВБ = 2200/132 = 16,6
Принимаем 16 болтов.
Стык стенки. Стенку перекрываем двумя вертикальными накладками сечением 320×1560×8 мм.
Определяем момент, действующий на стенку
Мст = MIст/I = 4781·381191/1792391 = 1016 кН·м
Принимаем расстояние между крайними по высоте рядами болтов:
amax = 1660·2·80 = 1500
Находим коэффициент стыка
= Mст/mamaxQВБ = 101600/2·150·132 = 2,56Из таблицы 7.8 (с. 166 [I]) находим количество рядов болтов по вертикали k.
при
= 2,56k= 13Принимаем 13 рядов с шагом 125 мм.
Проверяем стык стенки по формуле:
Проверяем ослабление нижнего растянутого пояса
Ап.нт = 2,0·(50 – 2·5,785) = 86,86 см2 > 0,85 Аn = 0,85·100 = 85 см2
Ослабление пояса можно не учитывать.
Проверяем ослабление накладок в середине стыка четырьмя отверстиями
= 112,8 – 4·2·1,2·5,785 = 57,2 см2 < 0,85An = 85 см2.
Принимаем накладки толщиной 18 мм
= 1,8·(50+2·22) – 4,2·1,8·5,785=85,9 cм2 >0,85An = 85 см2
10. Расчет опорной части главной балки
Опорная реакция балки F = 1275 кН
Определяем площадь смятия торца ребра
где Rсм.т. = 35,5 кН/см2 = 355 МПа (прил. 4 [I]).
Принимаем ребро 280×14 мм,
Ар = 28·1,4 = 39,2 см2 >35,9 см2.Проверяем опорную стойку балки на устойчивость относительно оси Z. Ширина участка стенки, включенной в работу опорной стойки:
Аст = АР + tcт·bст = 39,2 + 1·19,45 = 58,65 см2
Iz = 1,4·283/12 + 19,45·13/12 = 2562 cм4
λ = hст/iz = 166/6,6 = 25,1 по приложению 7 (I) φ = 0,947
Рассчитываем прикрепление опорного ребра к стенке балки двусторонними швами полуавтоматической сваркой проволокой СВ – 08Г2. Предварительно находим параметры сварных швов и определяем минимальное значение β
. По таблице 5.1 (I) принимаем = 215 МПа = 21,5 кН/см2; по прилож. 4 (I) – =165 МПа = 16б5 кН/см2, по табл. 5.4. (I)βш = 0,9; βс = 1,05
βш· = 0,9·21,5 = 19,3 кН/см2 > βc· = 1,05·16,5 = 17,32 кН/см2
Определяем катет сварных швов по формуле:
Принимаем швов kм = 7 мм.
Проверяем длину рабочей части шва:
lм = 85·βс·kм = 85·1,05·0,7 = 62,5 см < hcт = 166 см
Ребро привариваем к стенке по всей высоте сплошными швами.
11. Подбор и компоновка сечения сквозной колонны
Постоянная нагрузка от собственного веса колонны – 1,5 кПа. Расчетное усилие в стержне колонны:
N = 1,01·(np·p + ng·g) ·A·B = 1,01·(1,2·22 + 1,05·1,5) ·15·6 = 2540 кН
Длина колонны: l0 = 11 – 0,01 – 0,3 – 1,72 = 8,97 м
Зададимся гибкостью λ = 60 и находим φ = 0,785 (по прил 7 [1]), площадь сечения
Aтр = N/(φ·R) =2540/0,785·28 = 115,5 см2,
где R = 28 кН/м2 – расчетное сопротивление для стали марки Вст 3nc6 – 2 радиус инерции:
imp = l0/λ = 897/60 = 14,95
По сортаменту ГОСТ 8240 – 72* принимаем два швеллера 40 со значениями А = 2·61,5 = 123 см3; ix = 15,7 см.
Рассчитываем гибкость относительно оси х
λх = 897/15,7 = 57; φх = 0,800 (прил. 7)
Проверяем устойчивость относительно оси х
σ = N/φA = 2540/0,8·123 = 25,8 кН/м2 < R = 28 кН/см2
Рисунок 7 – Сечение сквозной колонны
Расчет относительно свободной оси.
Определяем расстояние между ветвями колонны из условий равноустойчивости колонны в двух плоскостях λпр = λх, затем требуемую гибкость относительно свободной оси у-у по формуле:
Принимаем гибкость ветви равной 30 и находим
Полученной гибкости соответствуют радиус инерции iy = 897/48 = 18,7 см; и требуемое расстояние между ветвями b = i·y/0,44 = 18,7/0,44 = 42 см
Полученное расстояние должно быть не менее двойной ширины полок швеллеров плюс зазор, необходимый для оправки внутренних поверхностей стержня bтр = 2·115 + 100 = 330 мм < 42 см, следовательно принимаем ширину колонны = 420 мм.
Проверка сечения относительно свободной оси.
Из сортамента имеет: I1 = 642 см4; i1 = 3,23 см; z0 = 2,68 см.
Iy = 2·[642 + 61,5·(21 – 2,75)2] = 42250 см4
Расчетная длина ветви lb = λ1·i1 = 30·3,23= 97 см
Принимаем расстояние между планками 97 см м сечение планок 10×250 мм, тогда
Iпл = 1·253/12 = 1302 см4
Радиус инерции сечения стержня относительно свободной оси
Гибкость стержня относительно свободной оси
λу = 897/18,5 = 48,5
Для вычисления приведенной гибкости относительно свободной оси надо проверить отношение погонных жесткостей планки и ветви
Iпл/b0: I1/lв = Iпл·lв/I1b0 = 1302·122/642·36,5 = 6,7 >5
Здесь b0 = 42 – 2·2,75 = 36,5 см – расстояние между ветвями в осях.
Приведенную гибкость вычисляем по формуле при отношении погонных жесткостей планки и ветвей более 5.
Т.к. λпр = λх, напряжение можно не проверять, колонна устойчива в двух плоскостях.