Подставляя в формулу 1.2 значения термических сопротивлений отдельных слоёв конструкции ограждающей поверхности и приравнивая значение сопротивления теплопередаче ограждения R к значению нормативного сопротивления теплопередаче R
, определяется толщина теплоизоляционного слоя. R , принимается в зависимости от типа ограждения по таблице 5.1[2]. также учитывая условиеРасчет сопротивления теплопередаче перекрытия над неотапливаемым подвалом
Наименование слоя конструкции | Толщинаслоя δ, м | Коэф. теплопроводностиматериала λ, Вт/м²·ºС | Примечание |
Покрытие пола. | 0,04 | 0,18 | Доска - сосна. p=500 кг/м³ |
Утеплитель - плиты пенополиуритан | 0,18 | 0,052 | p=80 кг/м³ |
Плита перекрытия | 0,22 | 2,04 | железобетон, p=2500 кг/м³ |
Наименование показателя | Значение | ||
коэф. теплоотдачи внутр. поверхности ограждающей конструкции αв, Вт/м²·ºС | 8,7 | ||
коэф. теплоотдачи наруж. поверхности для зимних условий αн, Вт/м²·ºС | 23 | ||
термическое сопротивление ограждающей конструкции Rк, м²·ºС/ВтRк = ∑ δ/λ | 3,79 | ||
сопротивление теплопередаче ограждающей конструкции Rt, м²·ºС/ВтRt = 1/αв + Rк + 1/αн | 3,95 | ||
нормативное сопротивление теплопередаче Rт норм., м²·ºС/Вт | 2 |
Для достижения рекомендуемого значения сопротивления конструктивно принимаю толщину утеплителя равную 180 мм.
Определяем тепловую инерцию D ограждения по формуле 1.3 где расчётные коэффициенты теплоусвоения материала отдельных слоёв ограждающей конструкции, определяемые по таблице П.2 [1], в зависимости от условий эксплуатации Б, определяемых по таблице 2.1 [1]:
S
= 19.70 , S = 0.55 ,S
= 4.54 .D = R ∙S
+ R ∙S + R ∙S= 0,115 ∙19.7 + 3,85∙0.55 + 0,22∙4.54= 5,38Рассчитанная тепловая инерция действительно попадает в выбранный нами интервал, следовательно расчет произведен верно.
Расчет Rт.эк. по формуле 5.1 ТКП 45-2.04-43-26.
136 усл.ед/м3. пенополиуретан по условию в методических указаниях
Полученное значение сопротивления теплопередаче R
ограждающей конструкции следует принимать равным экономически целесообразному Rт.эк,но не менее требуемого сопротивления теплопередаче Rт.три не менее нормативного сопротивления теплопередаче Rт.норм., что удовлетворяет условию: R R .1.3 Сопротивление теплопередаче чердачного перекрытия
Рисунок 3 -Конструкция чердачного перекрытия.
1. Маты из стекловолокна
2. Перекрытие-доска сосна 2а. Балка – брус сосна.
λi – коэффициент теплопроводности материала многослойной конструкции,
принимаемый по приложению А в соответствии с условиями эксплуатации конструкции А.Термическое сопротивление соответствующего слоя многослойной конструкции определяется по формуле 1.1
Термическое сопротивление соответствующего слоя многослойной конструкции определяется по формуле 1.1
; ;Подставляя в формулу 1.2 значения термических сопротивлений отдельных слоёв конструкции ограждающей поверхности и приравнивая значение сопротивления теплопередаче ограждения R к значению нормативного сопротивления теплопередаче R
, определяется толщина теплоизоляционного слоя. R , принимается в зависимости от типа ограждения по таблице 5.1[2].Расчет сопротивления теплопередаче чердачного перекрытия | |||
Наименование слоя конструкции | Толщинаслоя δ, м | Коэф. теплопроводностиматериала λ, Вт/м²·ºС | Примечание |
Утеплитель - Маты из стекловолокна | 0,22 | 0,051 | p=125 кг/м³ |
Перекрытие доска сосна | 0,06 | 0,18 | p=500 кг/м³ |
Наименование показателя | Значение | ||
коэф. теплоотдачи внутр. поверхности ограждающей конструкции αв, Вт/м²·ºС | 8,7 | ||
коэф. теплоотдачи наруж. поверхности для зимних условий αн, Вт/м²·ºС | 23 | ||
термическое сопротивление ограждающей конструкции Rк, м²·ºС/ВтRк = ∑ δ/λ | 4,65 | ||
сопротивление теплопередаче ограждающей конструкции Rt, м²·ºС/ВтRt = 1/αв + Rк + 1/αн | 4,81 | ||
нормативное сопротивление теплопередаче Rт норм., м²·ºС/Вт | 3 |
Для достижения рекомендуемого значения сопротивления конструктивно принимаю толщину утеплителя равную 220 мм.
Определяем тепловую инерцию D ограждения по формуле 1.3 где расчётные коэффициенты теплоусвоения материала отдельных слоёв ограждающей конструкции, определяемые по таблице А, в зависимости от условий эксплуатации А:
S
= 4.54 , S = 0.66 .D = R ∙S
+R ∙S= 0,33 ∙4.54+ 4,31∙0,66 = 4,33Полученное значение сопротивления теплопередаче R
ограждающей конструкции должно быть не менее требуемого сопротивления R , , определяемого по формуле 1.4 где: tв - расчётная температура внутреннего воздуха, °С, принимаемая по таблице А3 [1], tв=18°С; tн – расчётная зимняя температура наружного воздуха, °С принимаемая по таблице А6 [1]с учётом тепловой инерции ограждающих конструкций D (за исключением заполнений проёмов). Значение D оказалось в пределах (Св. 4,0 до 7,0), т.е. средняя температура наиболее холодных трех суток (определяется как среднее арифметическое между температурой наиболее холодных суток и наиболее холодной пятидневки), tн = –24°С; n - коэффициент, учитывающий положение наружной поверхности ограждающих конструкций по отношению к наружному воздуху, принимаемый по таблице А5 [1], n = 0,9; Δtв - расчётный перепад между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции, °С, принимаемый по табл. А5 [2] для покрытий и чердачных перекрытий равным 4°С;Расчет Rт.эк. по формуле 5.1 ТКП 45-2.04-43-26.
204 усл.ед/м3. маты и полосы из стеклянного волокна по условию в методических указаниях.Полученное значение сопротивления теплопередаче R
ограждающей конструкции следует принимать равным экономически целесообразному Rт.эк,но не менее требуемого сопротивления теплопередаче Rт.три не менее нормативного сопротивления теплопередаче Rт.норм., что удовлетворяет условию: R R .