Рисунок 3.3. Схема насосного агрегата
По расчетной мощности двигателя и частоте вращения по каталогу подбирается марка электродвигателя: ВСДН-17-49-16.
При использовании на насосной станции мощных (Q > 2 м3/с) вертикальных центробежных насосов подвод воды к ним осуществляется с помощью изогнутых всасывающих труб с давлением в них всегда выше атмосферного. Они выполняются в монолитном железобетоне в зданиях блочного типа. Число всасывающих труб равно числу установленных насосных агрегатов.
Рисунок 4.1. Всасывающая труба насоса с коленчатым подводом
Форма и размеры таких труб устанавливаются заводом изготовителем и зависят от диаметра входного патрубка.
Напорные трубопроводы в пределах здания станции служат для подачи воды от насосов к внешним напорным водоводам и включают в себя напорные линии насосов и соединительные трубопроводы. Для обеспечения отключения насосов от внешнего напорного трубопровода они оборудуются дисковыми затворами.
Диаметры напорных линий Dн внутри здания станции назначают по скоростям движения воды в них: при Dн > 800мм Vн = 1,8…3,0 м/с.
(4.1)Так как значение Dн больше диаметра напорного патрубка насоса dн =1,32м, переходы выполняют в виде диффузоров длиной
(4.2)Напорные трубопроводы служат для транспортировки воды к водовыпускным сооружениям. Трубопровод состоит из двух ниток, расстояние в свету между ними 2м для исключения подмыва при аварии.
Так как на насосной станции установлены насосы с идентичными характеристиками, график водоподачи ступенчатый и количество насосов подключенных к каждой нитке одинаковое расчетный расход этой нитки:
(4.3) - условный постоянный расход, который проходя по напорным трубопроводам, вызывает такие потери энергии, какие вызвал бы фактический переменный расход, проходя по тем же трубопроводам за тот же период времени; n- число ниток напорного трубопровода; t- продолжительность периода, сут.Для графика водоподачи и схемы соединения напорных трубопроводов с насосами, приведенных на рисунке эта формула будет иметь вид:
Рисунок 4.2. Схема соединения напорных трубопроводов с насосами
Для определенного
определяется диаметр напорного водовода: (4.4)Порядок построения графической характеристики системы "насосы - трубопроводы" при параллельной работе следующий:
Рисунок 5.1. Технологическая схема насосной станции: 1 – вход в трубу плавный; 2 – переход сужающийся; 3 – колено; 4 – переход сужающийся; 5 – переход расширяющийся; 6 – задвижка; 7 – труба 8 – колено; 9 – тройник; 10 – напорные водоводы.
Определяются внутристанционные потери по формуле:
(5.1)Где
- потери напора по длине всасывающего и напорного внутристанционного трубопроводов соответственно, которыми можно пренебречь; - потери напора в местных сопротивлениях соответственно во всасывающем и в напорном внутристанционном трубопроводах.Для технологической схемы насосной станции с насосами типа "В" и коленчатым подводом потери напора в местных сопротивлениях во всасывающем трубопроводе включают: потери на входе в трубу 1, в переходе сужающемся 2, 4, в колене 3.
(5.2) - скорости соответственно на входе в трубу, в колене и в переходе сужающемся, м/с:Потери напора в местных сопротивлениях в напорном внутристанционном трубопроводе определяются с учетом потерь напора в переходе расширяющемся 5, в дисковом затворе 6, колене 8 и тройнике присоединения к магистрали 9:
(5.3) - скорости соответственно в переходе расширяющемся, в дисковом затворе, в колене и в ответвлении тройника, м/с.Определяется удельное сопротивление внутристанционной линии:
(5.4)Строится кривая внутристанционных потерь Q- Нвн. ст:
(5.5)Определение координат кривой внутристанционных потерь удобно вести в табличной форме:
Таблица 5.1. Определение координат кривой внутристанционных потерь.
Q, м3/с | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
0 | 0,044 | 0,176 | 0,396 | 0,704 | 1,1 | 1,584 |
Строится характеристика напорного трубопровода Q- Нтр1,2:
(5.6)к - коэффициент, учитывающий местные потери в напорном водоводе, равен 1,1; S0=0,0001437 с2/м5 - удельное сопротивление водовода (зависит от его диаметра); l = 290 м - длина водовода.
Определение координат кривой характеристики сопротивления одного напорного водовода удобно вести в табличной форме:
Таблица 5.2. Определение координат кривой характеристики сопротивления одного напорного водовода.
Q, м3/с | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
0 | 0,04 | 0,18 | 0,41 | 0,73 | 1,14 | 1,65 | 2,24 | 2,93 | 3,71 | 4,58 | 5,54 | 6,60 | 7,74 | 8,98 | 10,3 |
Для построения этой кривой откладывается определенная ранее средневзвешенная геодезическая высота подъема (Нгср+ΔН - для станций работающих на излив) и проводится линия параллельная оси абсцисс.
Суммарная характеристика обоих водоводов строится путем сложения расходов в водоводах при постоянном напоре.
Наносится паспортная характеристика насоса Q- Н1,2,3, строятся характеристики двух и трех параллельно работающих насосов Q- Н1+2 и Q- Н1+2+3.
Отложив на шкале расходов заданную производительность насосной станции Qнст и поднявшись до пересечения с кривой Q- Нтр1+2 - получим точку А с координатами (Qнст; Н1). Н1 - напор необходимый в начале водовода при расчетной производительности Qнст.
Далее строится точка В с координатами (Qн; Н1). Qн - подача одного насоса.
В точке В к напору Н1 прибавляется величина внутристанционных потерь, соответствующих расходу одного насоса. Получается точка С, соответствующая значению полного напора насоса при максимальной производительности насосной станции.
Так как точка С не попадает на паспортную характеристику насоса, то производится обточка рабочего колеса насоса.
Изменение положения характеристики насоса обточкой рабочего колеса производится в следующей последовательности:
Строится парабола подобных режимов:
k- параметр параболы, который находится из условия прохождения ее через точку С т.е. (5.7)Находятся параметры точки Е пересечения параболы с паспортной характеристикой насоса при нормальном диаметре рабочего колеса (QЕ; НЕ).