Смекни!
smekni.com

Компоновка сборного перекрытия (стр. 1 из 8)

Содержание

1. Компоновка сборного железобетонного перекрытия

2. Проектирование предварительно напряжённой плиты

2.1 Сбор нагрузок на перекрытие

2.2 Данные для расчёта

2.3 Нагрузки

2.5 Компоновка поперечного сечения панели

2.6 Расчёт полки на местный изгиб

2.7 Расчёт прочности сечений нормальных к продольной оси

2.8 Расчёт прочности по наклонным сечениям

2.9 Расчёт преднапряжённой плиты по предельным состояниям IIгруппы

2.10 Расчёт по образованию трещин нормальных к продольной оси

2.11 Расчёт прогиба плиты

2.12 Расчёт плиты при монтаже

3. Проектирование наразрезного ригеля

3.1 Определение нагрузок

3.1.1 Вычисление изгибающих моментов в расчётной схеме

3.1.2 Перераспределение моментов под влиянием образования пластических шарниров

3.2 Расчёт прочности ригеля по сечениям нормальным к продольной оси

3.3 Расчёт прочности ригеля по сечениям наклонным к продольной оси

3.4 Построение эпюры материалов ригеля в крайнем и среднем пролёте

4. Расчёт прочности колонны

4.1 Сбор нагрузок на колонны

4.2 Определение расчётной продольной нагрузки на колонну

4.3 Определение изгибающих моментов колонны от расчётной нагрузки

4.4 Расчёт прочности колонны первого этажа

4.5 Расчёт консоли колонны

4.6 Расчёт стыка колонны

4.7 Расчёт стыка ригеля с колонной

5. Расчёт и конструирование отдельного железобетонного фундамента

6. Расчёт и конструирование монолитного перекрытия

6.1 Компоновка ребристого монолитного перекрытия

6.2 Расчёт многопролётной плиты монолитного перекрытия

6.2.1 Расчётный пролёт и нагрузки

6.3 Расчёт многопролётной второстепенной балки

6.3.1 Расчётный пролёт и нагрузки

6.3.2 Расчётные усилия

6.3.3 Определение высоты балки

6.3.4 Расчёт прочности по сечениям нормальным к продольной оси

6.3.5 Расчёт прочности второстепенной балки по сечениям наклонным к продольной оси

1. Компоновка конструктивной схемы сборного перекрытия

Ригели поперечных рам – трёхпролётные, на опорах жёстко соединены со средними колоннами, на стены опёрты шарнирно. Плиты перекрытий предварительно напряжённые многопустотные номинальной шириной 1900 мм и 2100 мм; связевые плиты номинальной шириной 2100 мм размещают по рядам колонн.

Рисунок 1 – Компоновка конструктивной схемы сборного перекрытия


2. Расчёт многопустотной плиты по предельным состояниям первой группы

Исходные данные. Многопустотная плита из тяжелого бетона класса В40 опирается поверху на железобетонные ригели каркаса, пролет ригелей – lp=5,9 м. Нормативное значение временной нагрузки 3,5 кПа. Требуется рассчитать и законструировать плиту перекрытия. Класс рабочей арматуры принять А-V.

2.1 Расчет плиты по предельным состояниям первой группы

2.1.1 Расчётный пролёт и нагрузки

Для установления расчётного пролёта плиты предварительно задаёмся размерами сечения ригеля:

hp=(1/12)*lp=(1/12)*590=50 см, bp=0.5*hp=0.4*50=20 см.

При опирании на ригель поверху расчётный пролёт плиты составит:

lo=l-bp/2=6,4–0,2/2=6,3 м.

Подсчёт нагрузок на 1м2 перекрытия сводим в таблицу 1.

Таблица 1 – Нормативные и расчётные нагрузки на 1 м2 перекрытия

Нагрузка Нормативная нагрузка, Н/м2 Коэффициент надёжности по нагрузке Расчётная нагрузка, Н/м2

Постоянная

Собственный вес многопустотной плиты с круглыми пустотами
3000 1,1 3300
То же слоя цементного раствора d=20 мм (r=2200 кг/м3) 440 1,3 570
То же керамических плиток d=13 мм (r=1800 кг/м3) 240 1,1 264
Итого 3680 - 4134
Временная 3500 1,2 4200
В том числе длительная 2450 1,2 2940
Кратковременная (30%) 1050 1,2 1260
Полная нагрузка 7180 - 8334
В том числе: Постоянная и длительная 6130 - 7074

На 1 м длины плиты шириной плиты 2,1 м действуют следующие нагрузки, Н/м: кратковременная нормативная pn=1050*2,1=2205; кратковременная расчетная р=1260*2,1=2646; постоянная и длительная нормативная qn=6130*2,1=12873; постоянная и длительная расчетная q=7074*2,1=14855,4; итого нормативная qn+pn=12873+2205=15078; итого расчетная q+p=14855,4+2646=17501,4.

2.1.2 Усилия от расчётных и нормативных нагрузок

Расчётный изгибающий момент от полной нагрузки:

M=(q+p)*l20*gn/8=17501,4*6,32*0.95/8=82487,4Н.м.

Расчетный изгибающий момент от полной нормативной нагрузки:

Mn=(qn+pn)*l20*gn/8=15078*6,32*0.95/8=71065,4Н.м.

То же, от нормативной постоянной и длительной временной нагрузок:

Mld=qn*l20*gn/8=12873*6,32*0.95/8=60672,9Н.м.

То же, от нормативной кратковременной нагрузки:


Mсdn*l20*gn/8=2205*6,32*0.95/8=10392,6Н.м.

Максимальная поперечная сила на опоре от расчетной нагрузки:

Q=(q+p)*l0*gn/2=17501,4*6,3*0.95/2=52372,9Н.

То же, от нормативной нагрузки:

Qn=(qn+pn)*l0*gn/2=15078*6,3*0.95/2=45120,9Н.

То же, от нормативной нагрузки:

Qnld=qn*l0*gn/2=12873*6,3*0.95/2=38522,5Н.

2.1.3 Установление размеров сечения плиты

Плиту рассчитываем как балку прямоугольного сечения с заданными размерами bxh=210х22 см (где b – номинальная ширина, h – высота плиты). Проектируем плиту одиннадцатипустотной. В расчете поперечное сечение пустотной плиты приводим к эквивалентному двутавровому сечению. Заменяем площадь круглых пустот прямоугольниками той же площади и того же момента инерции.

Вычисляем:

h1=0.9*d=0.9*15.9=14.3 см;

hf=hf’=(h-h1)/2=(22–14.3)/2=3.8 см;

тогда приведенная толщина ребер равна:

bp=b=bf’ – n*h1=207–11*14.3=49,7 см,


где bf’=207 см – расчетная ширина сжатой полки.

Приведенная толщина бетона плиты:

hred=h – (n*p*d2)/4b=22 – (11*p*15.92)/(4*207)=11.5 см>10 см.

Рабочая высота сечения h0=22–3=19 см.

Толщина верхней и нижней полок hf=(22–15.9).0.5=3 см.

Ширина ребер: средних – 2.9 см, крайних – 3 см.

2.1.4 Характеристики прочности бетона и арматуры

Плита изготавливается из тяжелого бетона класса В40, имеет предварительно напрягаемую рабочую арматуру класса А-VI с электротермическим натяжением на упоры форм. К трещиностойкости плиты предъявляются требования 3‑ей категории. Изделие подвергают тепловой обработке при атмосферном давлении.

Бетон тяжёлый класса В40

Призменная прочность бетона нормативная: Rbn=Rb,ser=29МПа, расчётная Rb=22МПа, коэффициент условий работы бетона gb2=0.9; нормативное сопротивление при растяжении Rbtn=Rbt,ser=2.1МПа, расчётное Rbt=1.4МПа; начальный модуль упругости бетона Eb=32.5*103МПа.

Передаточная прочность бетона Rbpустанавливается так, чтобы при обжатии отношение напряжений sbp/Rbp£0.75.

Арматура продольная класса A-VI

Нормативное сопротивление Rsn=Rs,ser=980МПа,

Расчётное сопротивление Rs=225МПа,

Модуль упругости Es=1.9*105МПа.

Предварительное напряжение арматуры назначаем таким образом, чтобы выполнялись условия

. При электротермическом способе натяжения:

Принимаем ssp=600МПа.

Определяем коэффициент точности натяжения арматуры

где n – число стержней напрягаемой арматуры, принимаем n=8.

.

При благоприятных влияниях предварительного напряжения gsp=1–0.1= 0,9. При проверке по образованию начальных трещин в верхней зоне плиты g'sp=1+0.1=1.1. Значение предварительного напряжения с учётом точности натяжения арматуры составит 0.9*600=540МПа.

2.1.4 Расчёт прочности плиты по сечению, нормальному к продольной оси

При расчёте прочности, сечение плиты принимается тавровым (полка нижней растянутой зоны в расчёт не вводится). Размеры сечения показаны на рисунке 2б. Вычисляем:


Находим

Высота сжатой зоны сечения:

следовательно, нейтральная ось проходит в пределах сжатой полки, и сечение рассчитывается как прямоугольное шириной bf=207 см.

Вычисляем характеристики сжатой зоны

ω=0,85–0,008·Rb=0,85–0,008·22·0,9=0,69

Вычисляем граничную высоту сжатой зоны

ξR=

где σSR=Rs+400 – σSP2

σSP=0,6Rsn=0,6·785=471 МПа

σSP2sp· σSP·0,7=0,84·471·0,7=276,95 МПа

σSR=680+400–276,95=803,1 МПа.

Поскольку соблюдается условие x<xR (0.034<0.43), то расчётное сопротивление арматуры умножается на коэффициент условий работы gs6:

где h=1.15 – коэффициент, принимаемый равным для арматуры класса A-V.