OUTPUT - определяются касательные напряжения по боковой поверхности фундамента и нормальные напряжения под нижним концом, а так же радиальные напряжения действующие на боковую поверхность фундамента; определяются сосредоточенные силы действующие на i-х элементах боковой поверхности (силы трения) и нижнего конца фундамента - нормальные силы, сумма соответствующих сил дает значения общего усилия по боковой поверхности и под нижним концом, а их сумма общее сопротивление фундамента.
В программе используются следующие основные переменные:
NE1 := NEA + NEB + NEC - число граничных элементов на боковой поверхности фундамента;
NN1 - число граничных узлов на боковой поверхности фундамента;
NE2 - число граничных элементов в плоскости нижнего конца фундамента;
NN2 - число граничных узлов в плоскости нижнего конца фундамента;
NE3 - число граничных элементов по окружности фундамента;
NN3 - число граничных элементов по окружности фундамента;
ls1 - длина первого (верхнего) участка фундамента;
ls2 - длина второго (среднего) участка фундамента;
ls3 - длина третьего (нижнего) участка фундамента;
ls := ls1 + ls2 +ls3 - общая длина фундамента;
E - модуль деформации грунта;
mu - коэффициент Пуассона для грунта;
ed1 - вертикальные перемещения узлов боковой поверхности фундамента;
ed2 - горизонтальные перемещения узлов боковой поверхности фундамента;
ed3 - вертикальные перемещения узлов нижнего конца фундамента;
ar1 - радиус фундамента в верхнем сечении I первого участка;
ars - радиус фундамента в нижнем сечении среднего участка;
arN - величина радиуса фундамента на уровне нижнего конца фундамента;
NE = NE1 + NE2 - число граничных элементов на поверхности фундамента;
NK1 := NE1 + 1 - номер элемента матрицы К из
NEE = 2 * NE1 - номер элемента глобальной матрицы К
NC2 := NЕЕ +1 - номер элемента глобальной матрицы К.
tga1 - тангенс угла наклона боковой поверхности (грани) среднего участка фундамента;
tga2 - тангенс угла наклона боковой поверхности нижнего участка фундамента;
NEA - число граничных элементов на первом (верхнем) участке фундамента в вытрамбованном котловане;
NEB - число граничных элементов на втором участке фундамента;
NEC - число граничных элементов на третьем (нижнем) участке фундамента;
HH1 - шаг граничных узлов на первом участке;
HH2 - шаг граничных узлов на втором участке;
HH3 - шаг граничных узлов на третьем участке;
inz [i,1], inz [i,2] - связность граничных элементов боковой поверхности фундамента;
inc [i,1], inc [i,2] - связность элементов нижнего конца фундамента;
int [i,1], int [i,2] - связность элементов окружности по боковой поверхности фундамента и в плоскости нижнего конца фундамента (в точках источников);
2.2.2. Дискретизация боковой поверхности и нижнего конца фундамента
11
2 I
2
3
3
4
4 II
5
5
6
67
7
8
8
9
9 III
10
11
12
13
Рис. 2.1. Схема дискретизации боковой поверхности
фундамента в вытрамбованном котловане
t, t
1 2 3 4 5 6 (NN2)
0 ar1 2 3 4 5 (NE2)
Рис. 2.2. Схема дискретизации нижнего конца фундамента
По длине фундамента в вытрамбованном котловане разбивается на три участка: верхний, средний (II), нижний (III) (рис. 2.1).
Количество граничных элементов задается в пределах каждого участка соответственно: NEA, NEB, NEC. Кроме того, для каждого участка задается длина (ls1, ls2, ls3). Угол наклона боковой поверхности участков II и III задан тангенсом угла наклона (tga1 и tga2) (см. рис. 2.3).
a1a2
Рис. 2.3.
При известных длине участков и количестве граничных элементов на них определяются коэффициенты i-узлов по длине фундамента:
Z[i] = Z[i-1] + HH1 -I участок;
Z[i] = Z[i-1] + HH2 - II участок;
Z[i] = Z[i-1] + HH3 - II участок,
где
- шаг граничных узлов на боковой поверхности фундамента в вытрамбованном котловане.Узлы qi при обходе граничных элементов по окружности при заданном числе элементов NE3 и диапазона изменения угла q = 0...p определяем по формуле (см. рис. 2.4):
Ai = Ai-1 + H3,
где H3 = p/NE3 - шаг граничных узлов по окружности радиус которой, равен радиусу узла в точке приложения (j).
p/2q
p 0
Рис. 2.4.
Радиус i-го узла на боковой поверхности фундамента в вытрамбованном котловане определим при известных его значениях ar1, ars, arN и тангенсах угла наклона tga1, tga2 по формуле
I участок
ar[i]=ar1;
II участок
ar[i]=ar[i-1] - tga1 * HH2;
III участок
ar[i]=ar[i-1] - tga1 * HH3.
Координаты узлов в плоскости нижнего конца фундамента определим из следующих соотношений (см. рис. 2.5)
координат по длине фундамента Z[i]=ls;
(ls - общая длина фундамента в вытрамбованном котловане),
координат в радиальном направлении ar[i]=ar[i+1] + H2,
где H2 - шаг узлов, находящихся на нижнем конце фундамента.
ar[NE1 + 1]
ar[NE1 + 2]
ar[NE + 1]=0
Рис. 2.5. Схема узлов на нижнем конце фундамента
В работе использовано понятие "связность элементов". Так как производится дискретизация поверхности фундамента в условиях осессимметричной задачи, то граничные элементы представлены прямыми линиями находящимися между граничными узлами и каждый граничный элемент, определяется если задать узлы которые его ограничивают (рис. 2.6).
2i
1
Рис. 2.6. Схема к понятию связности элементов
В данной работе для наглядности введены отдельно связности i-х элементов на боковой поверхности фундамента, в плоскости нижнего конца, и по окружности фундамента:
inz[i,1] inz[i,2],
inc[i,1] inc[i,2],
int[i,1] int[i,2],
где i - номер граничного элемента;1 , 2 - номера граничных узлов, окружающих связывающий i-й элемент (см. рис. 2.6).
2.2.3. Формирование матрицы коэффициентов влияния и свободных членов СЛАУ
При формировании коэффициентов глобальной матрицы влияния, отражающих зависимость перемещения точки наблюдения (i), когда источник возмущения находится в точке (j) используется решение Миндлина для силы приложений внутри упругого полупространства. Иногда для зависимости, когда действует единичная сила, эти решения называют фундаментальными. Для вертикальной силы Рв=1 зависимость для перемещений KW, когда точка наблюдения имеет координаты В(z,r), а источник возмущения находится на оси Z (радиальная координата равна нулю) на глубине с, запишется в виде:
с 0 0
r
с N
Рв
x(с,0) rB(z,r)
Z
Рис. 2.7. Схема обозначений в формуле Миндлина для сосредоточенной силы Рв, приложенной внутри упругого полупространства
(2.1)где
(2.2) (2.3)G - модуль сдвига грунта;
E - модуль деформации грунта;
v - коэффициент Пуассона грунта.
KW - вертикальное перемещение точки В при действии вертикальной силы Рв=1 в точке x(0,с).
Применение решения Миндлина к задаче о сопротивлении фундамента вертикальной нагрузке состоит в том, что точка приложения силы и точка наблюдения, в которой возникают вертикальные перемещения находятся на боковой поверхности или на нижнем конце. В связи с этим в формуле (2.1) выражения для R1 и R2 принимают вид:
(2.4) (2.5)где
(2.6)r - горизонтальная компонента расстояния от оси Z до точки B;
arc - горизонтальная компонента расстояния от оси Z до точки x;
r1 - горизонтальная компонента расстояния от точки В (точки наблюдения) до точки x (источник, место приложения силы);
R2 - расстояние от точки x' (фиктивный источник) до точки B;
R1 - расстояние от точки x (источник) до точки B.x(с,arc)
q
B(z,r)a
Рис. 2.8. Схема к определению координат точки приложения x(с,arc) и точки наблюдения B(z,r)
При определении коэффициентов влияния глобальной матрицы К учитываются различные варианты расположения источников (сил) и точек наблюдения.