Смекни!
smekni.com

Испытание конструкций динамическими нагрузками (стр. 6 из 9)

Определение напряжений в конструкции от динамической нагрузки можно также произвести с помощью петлевых тензорезисторов, наклеенных в тех местах, где необходимо найти эти напряжения, и просуммировать их с напряжениями от статической нагрузки. При таком определении напряжений надо знать величину модуля упругости материала конструкции.

Вибрационные колебания конструкции непрерывно меняют величину суммарного напряжения. В большинстве случаев знаки напряжений остаются постоянными, так как напряжения от статической нагрузки превалируют над напряжениями от динамической нагрузки. Однако возможны случаи, когда суммы напряжений от статической и динамической нагрузок будут переходить через нуль и напряжения станут знакопеременными. В том и другом случаях возможно возникновение усталости материала, причем во втором случае, когда имеются знакопеременные напряжения, явление усталости проявляется в большей степени, чем в первом.

Для возникновения усталости материала необходимо большое число циклов изменений напряжений, исчисляемое сотнями ты­сяч и миллионами.


4. ЛАБОРАТОРНАЯ РАБОТА. "ДИНАМИЧЕСКОЕ ИСПЫТАНИЕ СТАЛЬНОЙ БАЛКИ. ОПРЕДЕЛЕНИЕ ПОГРЕШНОСТИ РЕЗУЛЬТАТОВ ИСПЫТАНИЙ"

4.1. Виброизмерительные приборы

4.1.1. Сведения о теории и классификация приборов

Динамические испытания строительных конструкций отличаются от статических тем, что величина и направление нагрузки не остаются постоянными на этапах загружения, они сравнительно быстро изменяются во времени и вызывают линейные и угловые перемещения.

Параметрами линейной вибрации являются; перемещения, скорость, ускорения и резкость (первая производная от ускорения).

К параметрам угловой вибрации относятся: угол поворота, угловая скорость, угловое ускорение, угловая резкость.

Параметрами обеих видов вибрации служат: фаза, частота и коэффициент нелинейных искажений. Для их измерения необходима внешняя неподвижная система координат, относительно которой крепятся виброизмерительные приборы, фиксирующие абсолютные перемещения. Если создание такой системы затруднительно, применяют подвижную систе­му отсчета и вибропреобразователи инерционного действия. Основным элементом вибропреобразователя является инерционная масса m, соеди­ненная с корпусом прибора пружиной жесткостью к и демпфирующим элементом с коэффициентом успокоения с (рис. 2). Корпус прибора со­вершает колебания у вместе с исследуемой конструкцией. Масса перемещается относительно корпуса прибора на величину z, которая может быть записана на вращающемся с заданной скоростью барабане. Пе­ремещение пружины — х. Следовательно, z= х + у.

Для определения закономерностей движения системы запишем дифференциальное уравнение движения массы m по времени t:

Подставив значение z, получим

,

где точки над буквами обознача­ют дифференцирование по времени.

Для анализа работы вибропреобразователя введем в уравнение (15) следующие обозначения:

- частота собственных колебаний системы;

- коэффициент затуха­ния.
Тогда
.

Если в приборе нет демпфирующего элемента

и частота собственных колебаний незначительная
, то
. Пренебрегая произвольными постоянными, получим
, и показания прибора будут соответствовать действительным перемещениям испытываемой конструкции. Такой прибор называется виброметром.

Инерционная масса (или сейсмомасса) при податливой пружине практически не меняет своего положения в пространстве.

Если при низкой частоте собственных колебаний

в прибор ввести хорошо гасящий колебания демпфирующий элемент, то из уравнения (16), пренебрегая первым и третьим слагаемыми, получим
, откуда
. Такой прибор служит для определения скорости колебаний и его называют виброметром скорости (вибровелосиметром).

При отсутствии демпфера и высокий частоте колебаний перемещение массы пропорционально ускорению;

и такой прибор является виброметром ускорения (виброакселерометром).

Виброизмерительные приборы можно разделить на две основные группы: контактные и дистанционные (рис.8). К контактным приборам относятся механические и оптические приборы, применяемые чаще при освидетельствовании конструкций для приближённого определения параметров колебаний (амплитуд и частот). Аналогично назначение и оптических приборов. Более точные измерения могут быть получены приборами с регистрацией показаний на специальной ленте или бумаге ручным вибрографом или вибрографом Гейгера.

Бесспорными преимуществами обладают дистанционно работающие вибропреобразователи, устанавливаемые на испытываемой конструкции (первичные приборы), сигнал которых записывается вторичными прибо­рами, установленными на определенном расстоянии от испытываемой конструкции.

Процесс измерения динамических характеристик испытываемой кон­струкции обычно состоит из следующих операций:

-преобразование измеряемой величины в другую физическую вели­чину более удобную для измерения;

-измерение вторичной физической величины;

-регистрация измерений;

-обработка результатов измерений.


4.1.2. Характеристики используемых приборов

4.1.2.1. Вибромарка

Вибромарка инженера Р.И. Аронова (рис. 7) служит для измерения вибрации с постоянной амплитудой. Принцип действия прибора основан на оптическом эффекте человеческого глаза, т. е. на слитности восприятий явлений, чередующихся быстрее 7 раз в 1 секунду. Следовательно, вибромарка применима при колебаниях с частотой 17 циклов в секунду с малой амплитудой или 8 циклов в секунду при большей амплитуде, так как при меньшем числе колебаний наблюдатель не может надёжно видеть фигуру возникающего клина. Чем больше амплитуда вибрации, тем ближе к основанию расположится остриё клина (рис. 9). Таким образом, вибромарка может быть протарирована как приспособление для измерения амплитуд.


Вибромарка вычерчивается на бумаге в виде острого угла с основанием b=5...20 мм и L=50...200 мм и наклеивается на поверхность конструкции, размах колебаний которой требуется определить. Колебания совершаются в направлении стрелок (Рис. 10). Наблюдатель может измерить расстояние l до пересечения сдвоенных треугольников, а затем определить амплитуду колебаний по формуле

.


4.1.2.2. Ручной виброграф

Для записи колебаний высокой частоты могут с успехом применяться ручные вибрографы. Среди них нашел большое распространение ручной виброграф марки ВР-1, который при записивиброграммы удерживается непосредственно в руках экспериментатора и не требует никакой подставки.

Виброграф (рис. 11) состоит из корпуса 1, в который запрессована трубка 2. Внутри трубки расположен стержень 3 с выступающим наружу наконечником 4. Верхний конец стержня проходит в корпус и упирается своим наконечником в рычаг 5, оттягиваемый книзу концом спиральной пружины 6, прикрепленной к поводку 7. Поводок может передвигаться вдоль трубки и закрепляться в желаемом положении двумя винтами 8. Передвигая по­водок книзу, можно увеличить давление пружины на стержень. Чтобы давление пружины не вытолкнуло стержень вниз, в верхней его части, под наконечником насажена сферическая шайбочка 9, упирающаяся в соответствующее гнездо.