Смекни!
smekni.com

Испытание конструкций динамическими нагрузками (стр. 5 из 9)

Динамические испытания строительных конструкций в режиме собственных или вынужденных колебаний являются одним из составных элементов комплексного неразрушающего контроля качества готовой продукции. Наиболее широкое применение получили вибрационные испытания на предприятиях изготавливающих сборный железобетон. Испытания проводятся для контроля качества изгибаемых изделий, в том числе и предварительно напряжённых.


4. ПРОВЕДЕНИЕ ИСПЫТАНИЯ

Испытание конструкции динамической нагрузкой является более сложным, чем испытание статической нагрузкой. Эта сложность заключается в том, что испытательная нагрузка и испытательные приборы, применяемые для записи деформаций, представляют собой в большей своей части механизмы, приводимые в движение во время испытания. Причем требуется, чтобы они работали синхронно и четко, как один общий агрегат. Необходимо составить подробный план проведения испытания, в котором надо предусмотреть все детали, даже имеющие второстепенное значение.

Обработку результатов испытания желательно разделить на две части:

1) полевую обработку результатов для оценки правильности протекания эксперимента и для своевременного устранения возможных неполадок;

2) камеральную обработку результатов испытания с вычислением всех намеченных к определению величин: амплитуд и частот колебаний, ускорений, напряжений, динамических коэффициентов и т. п.

Рассмотрим некоторые случаи проведения испытаний сооружений динамической нагрузкой.

Экспериментальное определение частоты свободных колебаний конструкции

Определение частоты свободных колебаний имеет большое значение для правильной эксплуатации исследуемой конструкции. Зная частоту собственных колебаний конструкции, можно решить вопрос о допустимости установки на исследуемом объекте какого-либо агрегата, создающего при его движении возмущающую нагрузку с определенной частотой, или же выяснить, какой агрегат из ранее установленных создает резонанс, и найти возможные пути ликвидации этого явление.

Определение частоты свободных колебаний конструкции или ее элемента, можно осуществить двумя способами.

Первый способ. Конструкция подвергается отдельному удару, который вызовет ее затухающие (свободные) колебания, и на установленном заранее вибрографе или осциллографе записать виброграмму. Имея запись колебаний и времени, можно подсчитать частоту колебаний исследуемой конструкции. При эксперименте фотоленту прибора следует пускать с достаточно большой скоростью и для подсчета частоты колебаний брать длинный участок записи, что обеспечит условия для наиболее точного определения частоты.

При обработке виброграммы первые две-три полуволны исключаются из рассмотрения, так как на них отражается непосредственное действие удар. Определение числа колебаний рекомендуется вести на остальной части виброграммы, где колебания имеют более установившийся характер. Следует иметь в виду, что скорость движения ленты переменная, поэтому необходимо следить за показаниями отметчика времени.

Второй способ. На испытываемом элементе устанавливается вибромашина. Затем приводят её в действие, увеличивая ступенями число оборотов. При каждой ступени оборотов, выждав, пока колебания конструкции примут стабильный характер, делают необходимые записи самопишущими приборами (вибрографом, динамическим прогибомером или осциллографом).

Когда частота возмущающей силы вибромашины совпадает с частотой собственных свободных колебаний конструкции, образуется резонанс, который резко выделится на виброграмме возросшими размерами амплитуд. Полезно одновременно изме­рить частоту вращения вибромашины с помощью тахометра или частотомера, что даст возможность проверить также правильность показаний отметчика времени и более уверенно вычислить частоту собственных колебаний.

4.2. Определение динамических коэффициентов

Динамические коэффициенты определяются, как правило, для тех конструкций, по которым перемещаются подвижные нагрузки, например железнодорожные составы, автомобили, мостовые краны и т. п. и необходимы для расчета подобных конструкций. Определяемые расчетным путем напряжения и деформации от динамических нагрузок суммируются с напряжениями и деформациями от статических нагрузок.

При проектировании динамический коэффициент определяют теоретически с рядом допущений или же используют динамические коэффициенты, полученные экспериментально для аналогичных сооружений, ранее построенных. Для мостов такие определения динамических коэффициентов ведутся много лет и накоплен достаточно богатый опытный материал.

При экспериментальном определении динамического коэффициента его значение выводится из соотношения

,

где

- максимальный прогиб балочной конструкции при мед­ленном проходе нагрузки (статическое загружение);

- максимальный прогиб при движении нагрузки со скоростью, вызывающей наибольшие колебания конструкции (динамическое загружение).

Такие два загружения можно легко осуществить для нагрузок, движущихся по рельсам (локомотивы, трамваи, подъёмные краны и т. п.).

При экспериментальном определении динамического коэффициента для автодорожных мостов, где повторить идентичное загружение почти не представляется возможным, подвижную нагрузку пропускают по мосту не дважды, а один раз со скоростью, вызывающей наибольшие колебания конструкции, и записывают виброграмму или осциллограмму прогибов (рис. 7). Наибольшая ордината даст величину максимального динамического про­иба

. Для получения прогиба от статической нагрузки необходимо на записанной кривой провести среднюю линию, делящую пополам размах вибраций; эта кривая представляет собой диаграмму статических прогибов, и её наибольшая ордината
принимается для определения динамического коэффициента.

Определение напряжений в элементах конструкции при действии динамической нагрузки

Напряжения в элементе конструкции при действии динамической нагрузки состоят из напряжения от статической нагрузки, включая собственный вес элемента, сложенного с динамическим напряжением вызванным вибрацией:

В этом случае учитываются только те динамические напряжения, которые имеют одинаковый знак с напряжениями от статической нагрузки. Например, если рассматривается изгибаемая балка, то к напряжениям от статической нагрузки прибавляются напряжения, вызываемые динамической нагрузкой, при деформации балки в сторону статического прогиба.

Для определения

необходимо вычислить инерционную силу, действующую на исследуемый элемент. Инерционная сила равна массе, умноженной на ускорение:

.

Ускорение можно измерить акселерометром или получить из виброграммы, пользуясь формулой:

,

где

- период колебания;

- наибольшая амплитуда;

- ускорение элемента конструкции. Отсюда

Отсюда

,

где

- частота колебаний элемента.

Во всех точках, где требуется определить ускорение, надо установить акселерометры, вибрографы, динамические прогибомеры или прогибомеры с проволочными датчиками и записать виброграммы или осциллограммы.

При действии на элемент осевой силы динамическое напряжение

.

В случае действия на балку на двух шарнирных опорах со­средоточенной силы

, приложенной в середине пролета, динамическое напряжение равно:

.

Если вибрирует балка на двух шарнирных опорах под действием собственного веса и равномерно распределенной нагрузки, то динамическое напряжение можно вычислить по формуле:

.

где

- масса, приходящаяся на единицу длины балки;

- ускорение, определенное на середине пролета балки.

При вибрации балки, несущей равномерно распределенную нагрузку и сосредоточенный груз посередине пролета, динамическое напряжение найдется по формуле

/

Когда вибрирующая балка несет сложную нагрузку, состоящую из ряда сосредоточенных сил и сплошных неравномерных нагрузок, теоретическое вычисление приведенной массы которых представляет некоторые затруднения, рекомендуется следующий прием. Балка вместе с приходящейся на нее нагрузкой разбивается на ряд участков, в пределах которых просто вычислить величины масс

каждого участка. В центрах каждого участка устанавливаются акселерометры, вибрографы или прогибомеры с петлевыми тензорезисторами и записываются осциллограммы или виброграммы, по которым определяются ускорения
. Перемножив массы на соответствующие ускорения, находят инерционные силы
, действующие в каждом участке балки. Зная величины инерционных сил и точки их приложения, принимаемые в центрах отдельных участков, можно вычислить изгибающие моменты, действующие на балку, и определить динамические напряжения в любом сечении по ее пролету.