Время эксплуатации элементов tосм
Очень важно определить оптимальный промежуток времени между осмотрами. Для этого рассмотрим состояние элемента, находящегося в эксплуатации, процесс появления и устранения дефекта для предупреждения перерастания его в отказ (рис. 1). Первое возможное состояние элемента, обладающего интенсивностью, появления дефектов и отказов λ1- дефект за время t не возник (рис. 1,а). Второе возможное состояние элемента -дефект возник, но при очередном осмотре устранен, чем предотвращен отказ, элемент приобрел новые эксплуатационные свойства, выразившиеся в снижении интенсивности дефектов и отказов дозначений λ2 ‹ λ1 (рис. 1,б).
Вероятностное значение первого состояния определим из выражения
Р1(t)= e- λ1t
где λ1 – интенсивность появления дефектов и отказов, устраняемых в процессе осмотров (определяется статистически по данным регистрации дефектов и отказов в эксплуатационной организации); t – время, за которое характеризуется бездефектность элемента.
Для определения второго состояния элемента рассмотрим малый интервал времени (τ,τ+dτ), предшествующему моменту t. Вероятность того, что в этом интервале появится дефект, равна f1(τ) Вероятность того, что с этого момента до t будет обнаружен и устранен дефект и предотвратится отказ элемента, определяется выражением
Р2(t-τ) =e- λ2(t-τ)
где λ2 - интенсивность появления отказа элемента после устранения выявленных в процессе осмотра дефектов (определяется по числу заявок в диспетчерскую систему по данному виду элемента).
На основании теоремы умножения вероятностей находим элементарное значение вероятности появления дефекта и его устранения с восстановлением эксплуатационных характеристик:
Р2(t-τ) f1(τ) dτ.
Суммируя по всем τ от 0 до t, найдем вероятность второго состояния элемента:
t t
Р2(t) = ∫ Р2(t- τ)f1 (τ) dτ = ∫ λ1 e- λ2(t-τ) e- λ1(t-τ) dτ =(λ1/λ 2 - λ1)( e- λ1t - e- λ2t)
0 0
Третье состояние элемента - появился дефект, но не устранен и перерос в отказ - имеет математическое выражение
Рз (t)=1 -Pi (t)- Р2(t)
Работоспособность элемента сохраняется, если он находится в первом и втором состоянии. Просуммируем вероятности этих состояний:
Р(t)= Р1(t)+Р2(t)= e- λ1t+(λ1/λ 2 - λ1)( e- λ1t - e- λ2t)
Очевидно, что мероприятия осмотра повышают безотказность (бездефектность) элемента на Р2(t).
Для определения периодичности осмотров t, при котором воздействие осмотра на повышение бездефектность элемента имеет наибольшее значение, необходимо выражение Р2(t) продифференцировать по t и производную приравнять к нулю. Решив полученное уравнение относительно t, находим оптимальный период между осмотрами:
tопт = (lnλ1 - lnλ2) / (λ1 - λ2). (1.6)
Как видно на рис. 2, не всегда tопт соответствует требуемой безотказности конструктивного элемента или инженерной системы. В связи с этим при назначении периода между осмотрами поступают следующим образом:
если tопт вычисленное по формуле (1.6), соответствует Р(t) ≥ 0,95, его принимают для назначения периода между осмотрами данного элемента;
если tопт, вычисленное по формуле (1.6), соответствует Р(t) < 0,95, то период между осмотрами определяют графически; для этого из точки А на оси ординат (см. рис. 2), соответствующих значению Р(t) =0,95, проводят горизонтальную линию, параллельную оси абсцисс, до пересечения с кривой Р(t) ; из точки пересечения В проводят прямую, параллельную оси ординат, до пересечения с осью абсцисс; точка С пересечения этой линии на оси абсцисс дает искомое значение периода между осмотрами tосм.
В случае, когда вычисленное по приведенной выше методике время между очередными осмотрами примет значение tосм≥ 6 мес., конструкции и инженерные системы проверяют в ходе общих весеннего и осеннего осмотров.
Определение параметровпри планировании мероприятий технической эксплуатации возможно только при наличии достаточно полной и достоверной информации о состоянии эксплуатируемых элементов и инженерных систем зданий. Наиболее объективную информацию получают в условиях работы автоматизированных систем управления эксплуатацией зданий, низовым звеном которых являются диспетчерские службы эксплуатационных организаций. Сбор и хранение информации о состоянии частей зданий, учет и обработка данных об отказах и дефектах должны исключать влияние субъективных факторов. Автоматизированные системы позволяют не только рассчитывать параметры эффективной организации эксплуатационных процессов по устранению дефектов и отказов. На основе обработки статистических данных об изменении состояния конструкций и инженерных систем они прогнозируют оптимальные периоды и методы выполнения эксплуатационных мероприятий, высокую культуру обслуживания населения при наименьших материальных, трудовых и энергетических затратах.
С этой целью в диспетчерской системе устанавливают периферийные автоматические устройства для сбора первичной информации, в которых автоматически кодируются данные о виде и месте неисправностей, а также другие реквизиты, необходимые для объективной оценки состояния частей здания и принятия мер по своевременному устранению возникающих неисправностей. Информация может находиться как на контроле, когда система периодически выдает сигнал о существовании неисправности, так и в режиме хранения, когда информация выдается по требованию пользователя. Устройства сопряжены со средствами регистрации и хранения информации. Для этого в составе технических средств диспетчерских систем предусмотрена соответствующая аппаратура, а также установка мини-ЭВМ.
Список литературы
1. Г.А. Порывай «Организация планирование и управление эксплуатации зданий» М. 1983г.
2. Л.Г. Дикман «Организация строительного производства» 4-е издание
М. 2002г.