Пример: Определение вероятности появления редких событий
Формула Пуассона выводится из формулы Бернулли и после ряда преобразований выглядит следующим образом
Эта формула применяется в прикладных разработках, в теории массового обслуживания (теории очередей), которая используется для расчета оптимального числа точек обслуживания, числа бензоколонок, числа рабочих мест операционистов в банке (такое число, чтобы не было очередей).
Кроме того, формула Пуассона применяется в ситуациях, когда не требуется высокая точность расчетов, а вероятность события p не велика.
10. Локальная теорема де Муавра-Лапласа.
В 1730 г. формула для приближения расчета значений для случая, когда p=q=0,5 предложил французский математик де Муавр.
Позднее в 1783 г. Лаплас обобщил результаты, полученные де Муавром, в своей теореме. Если вероятность p появления события Е в каждом испытании постоянна и отлична от 0 и 1, то вероятность
Созданы специальные таблицы значений функции
Пример: Найти вероятность того, что 80 из 1000 приобретут мужскую обувь, если вероятность покупки обуви p=0,11 (по данным из наблюдений за предыдущий период).
1)
Поскольку в функции
Таким образом, только в 404 случаях из 1 млн. ровно 80 из 1000 посетителей приобретут мужскую обувь.
2)
Таким образом, в 242 случаях из 10000 ровно 120 из 1000 посетителей приобретут мужскую обувь.
11. Интегральная формула Лапласа.
Локальная теорема Лапласа имеет важное значение, однако ее практическое значение ограничено. На практике важно знать вероятность того, что событие Е произойдет число раз, заданное в определенных пределах.
Пример: Вероятность приобретения покупателями мужской обуви от 80 до 120 человек из 1000.
Каждое из слагаемых определяется по локальной формуле Лапласа. Высокая трудоемкость задачи очевидна, поэтому рациональным способом решения задачи является интегрирование локальной функции Лапласа.
Если вероятность p появления событий Е в каждом испытании постоянна и отлична от 0 и 1 , то
Интегрированная функция описывает распределение вероятности полной группы событий, поэтому ее общая площадь в пределах изменения t от
Поскольку функция асимптотически приближается к оси абсцисс в пределах изменения t от
Значения функции даны в приложении 3, они указаны в пределах от –t до +t.
Пример: от 80 до 120
Таким образом, в 84 случаях из 100.
Складывая и вычитая площади, определенные по таблицам всегда можно получить необходимый результат.
12. Зависимые события. Гипергеометрическое распределение.
Для вывода функции гипергеометрического распределения проводятся испытания (выборка) по схеме невозвращающегося шара. В этом случае вероятность появления события Е k-раз в n зависимых испытаниях подвергается влиянию не только числа отбираемых единиц n, но и численности всей генеральной совокупности N.
Если p доля единиц генеральной совокупности, обладающих изучаемым признаком, а q – доля необладающих этим признаком, то вероятность появления события Е k раз n зависимых испытаний определяется по формуле:
Математическое ожидание гипергеометрического распределения не зависит от объема генеральной совокупности и как в биномиальном распределении определяется по формуле:
Если численность генеральной совокупности достаточно велика, то
13. Нормальное распределение.
Нормальное распределение – это наиболее важный вид распределения в статистике.
Нормально распределяются значения признака под воздействием множества различных причин, которые практически не взаимосвязаны друг с другом и влияние каждой из которых сравнительно мало, по сравнению с действием всех остальных факторов.
Нормальное распределение отражает вариацию значений признака у единиц однородной совокупности. Подобное распределение наблюдается преимущественно в естественно-научных испытаниях (измерение роста, веса).
В социально-экономических явлениях нормального распределения данные встречаются редко. Здесь всегда присутствуют причины существенным образом влияющие на уровень изучаемого признака (результат управленческого воздействия).
Тем не менее, гипотеза о нормальном распределении исходных данных лежит в основе методологии анализа взаимосвязей выборочного метода и многих других статистических методов.
При достаточно большом числе испытаний нормальная кривая служит пределом, к которому стремятся многие виды распределения, в том числе биномиальное и гипергеометрическое.
Нормальное распределение выражается функцией вида:
Данная функция характеризует плотность нормального распределения вероятности, ее математическое ожидание
Масштабирование данных кривой по оси x осуществляется величинами среднеквадратического отклонения