Пример: Два продавца независимо друг от друга обслуживают покупателей. Вероятность того, что первый продавец сумеет продать товар 0,3, а второй – 0,2. Какова вероятность того, что хотя бы один из продавцов реализует товар?
Данную задачу можно решить и другим способом, рассматривая события, как независимые совокупности. Тогда вероятность, что первый продавец не сумет продать товар – 0,7, а вероятность того, что второй не сумеет продать товар – 0,8.
Пример: Вероятность покупки мужского костюма посетителем магазина составляет 0,02, галстука – 0,1, а вероятность покупки галстука под приобретенный костюм - 0,3.
Комбинация теорем сложения и умножения вероятностей выражается в формуле полной вероятности.
Вероятность события Е, которое может произойти только при появлении одного из событий
По условию достоверным является появление одного из событий
Но так как все эти события не совместны, вероятность появления одного из них определяется по теореме сложения вероятностей.
Пример: На плодоовощную базу поступило 4 партии картофеля. В первой партии – 95% доля стандартных клубней, во второй – 97%, в третьей – 94%, в четвертой – 91%. При этом доля первой партии в общем объеме поставок – 28%, второй – 31%, третьей – 24%, четвертой – 17%. Определить вероятность того, что магазину, заказавшему товар, достанется стандартная продукция.
Полученный результат характеризует математическое ожидание или вероятность поставки стандартной продукции в магазин. Фактически это долевая средняя, показывающая среднюю долю стандартных клубней в четырех партиях.
7. Вероятность гипотез. Формула Байеса.
Как уже отмечалось, практически любое утверждение в статистике рассматривается как гипотеза, то есть некоторое предположение о наличии, форме, тесноте взаимосвязей.
Предположим, событие Е наступает только при появлении одного из несовместных событий
Каждое из этих событий рассматривается как гипотетическое и его вероятность как раз определяется по формуле Байеса.
Предыдущий пример: Известно, что в магазин поставлен стандартный картофель. Какова вероятность того, что он из четвертой партии.
Таким образом, только в 16-ти случаях из 100 доставленная в магазин стандартная продукция окажется из четвертой партии.
Применение формулы Байеса позволяет переоценить вероятности гипотез по результатам испытаний, в следствие которых появилось событие Е.
Достоинство формулы Байеса в том, что она может применяться при отсутствии сведений о числе элементарных исходов, достаточно знать вероятности или частости событий.
8. Независимые события. Биномиальное распределение.
Предположим событие Е во всех случаях имеет одну и ту же вероятность
Такой подход позволяет рассматривать практически любое пространство элементарных событий, как дихотомное (то есть состоит из противоположных событий).
Допустим, необходимо определить вероятность появления события Е ровно k раз в n независимых испытаниях. В этом случае событие противоположное Е произойдет n-k раз. Отобрать k-элементов из n можно различными способами, каждый из которых несовместное событие, появление которого это результат игры случая.
В математике доказано, что число различных комбинаций из n элементов по k определяется по формуле:
В соответствии с теоремой умножения вероятностей вероятность появления одной из возможных комбинаций определяется по формуле:
Формула, которая определяет вероятность появления события Е k-раз в n-независимых испытаниях, называется формулой Бернулли. А схема отбора из дихотомной совокупности схемой Бернулли (или схемой возвращаемого шара или схемой повторного отбора).
Пример: Для обслуживания покупателей супермаркета в час пик без очередей должно работать не менее 6 контролеров-кассиров из 8. Вероятность отсутствия одного из работников составляет 0,1. Найти вероятность работы расчетно-кассового узла без очередей.
Поскольку нас устраивает работа 6, 7, 8 кассовых кабин, то вероятность появления одного из этих несовместных событий будет определяться по формуле сложения вероятностей. Каждая из этих вероятностей может определяться по формуле Бернулли.
Таким образом, в 96 случаях из 100 очередей не будет.
Если при фиксированной численности n-повторного отбора из дихотомной совокупности изменять величину k, то полученное распределение вероятности будет называться биномиальным. Поскольку его ординаты представляют собой элементы разложения бинома
Число наступления событий в n-независимых испытаниях называется наивероятнейшим, если этому числу соответствует наибольшая вероятность.
При этом если k смешанное число, то в результате выбирается ближайшее к этому смешанному числу, но меньше его, целое число.
В примере с кассирами
Математическое ожидание М(k) числа появления событий Е в n-независимых испытаниях равно произведению числа испытаний на вероятность появления события в каждом испытании.
Если перейти от абсолютного числа раз появления события к плотностям распределения вероятностей, то будет равно p.
Дисперсия биномиального распределения
График биномиального распределения зависит от соотношения p и q. Если p равно q и равно 0,5, то распределение симметрично, в противном случае (p≠q) наблюдается асимметрия или скошенность полигона.
Показатель асимметрии биномиального распределения определяется по формуле:
Если
9. Вероятность редких событий. Формула Пуассона.
Применение формулы Бернулли сопряжено с расчетами трех факториалов, что при достаточно больших значениях n, k, n-q, осложняет задачу. Поэтому статистики математики разработали ряд примерных методов, заменяющих формулу Бернулли при решении некоторых частных и общих задач.