Смекни!
smekni.com

Статистика (стр. 7 из 21)

, где
- нижняя граница модального интервала, i – величина этого интервала,
,
,
- частоты модального, предшествующего ему и следующего за ним интервалов.

Для последней таблицы (данные о выработке рабочих токарей):

Медиана (вид процентиля), который занимает серединное положение в ряду распределения. Медиана определяется по формуле:

, где
- нижняя граница интервала, содержащего медиану (интервал определяется по накопленной частоте, первой превышающей 50% суммы частот (в дальнейшем для квартилей, децилей – 25%, 75%, 0,1%, 0,2% и т.д.)), i – величина этого интервала,
- номер медианы,
- накопленная частота интервала, предшествующего медиане,
- частота медианного интервала.

Поскольку медиана разновидность процентиля то данная формула носит универсальный характер, она может применяться для определения квартилей (Q) и децилей (d).

Квартили (четверти) отсекают от совокупности соответственно 25%, 50% и 75%.

Децили отсекают от совокупности соответственно 10%, 20%, 30% и т.д.

На первом этапе определяется номер процентиля по формуле:

- для ряда четным числом единиц;

- с нечетным числом единиц.

- номер процентиля (порядковый),
- индекс процентиля (выражается десятичной дробью) (
), N – численность совокупности.

Расчет моды и процентилей

на примере группировки магазинов по сумме товарооборота.

Группы магазинов с торговой площадью, кв. м

Число

магазинов,

Накопленная

частота,

До 100

6

6

100-200

12

18

200-300

27

45

300-400

13

58

400-500

8

66

Свыше 500

5

71

Итого

71

Накопленная частота – это сумма частот данного и всех предшествующих ему интервалов.

Четверть всех магазинов имеет площадь менее 200 кв. метров, а остальные 75% более 200 кв. метров.

Три четверти магазинов имеют торговые площади не превышающие 369,2 кв. метров, остальные больше.

Показатели вариации.

1. Понятие вариации и роль ее изучения в статистических исследованиях.

2. Измерители вариации.

3. Прямой способ расчета показателей вариации.

4. Свойства дисперсии и среднего квадратического отклонения.

5. Упрощенный способ расчета дисперсии и средне квадратического отклонения.

6. Относительные показатели вариации.

7. Стандартизация данных.

8. Моменты распределения.

9. Показатели асимметрии и эксцесса.

10. Средняя арифметическая и дисперсия альтернативного признака.

1. Понятие вариации и роль ее изучения в статистических исследованиях.

Вариация – это колеблемость значений признака у отдельных единиц совокупности.

Наличию вариации обязана своим появлением статистика. Большинство статистических закономерностей проявляется через вариацию. Изучая вариацию значений признака в сочетании с его частотными характеристиками, мы обнаруживаем закономерности распределения (например: население по возрасту, студентов по уровню оценок).

Рассматривая вариацию одного признака параллельно с изменением другого, мы обнаруживаем взаимосвязи между этими признаками или их отсутствие (например: зависимость между торговой площадью и товарооборотом).

Вариации в статистике проявляются двояко, либо через изменения значений признака у отдельных единиц совокупности, либо через наличие или отсутствие изучаемого признака у отдельных единиц совокупности.

Изучение вариации в статистике имеет как самостоятельную цель, так и является промежуточным этапом более сложных статистических исследований.

2. Измерители вариации.

Простейшим показателем вариации является размах колебаний:

.

Достоинство этого показателя простота расчета, возможность использования для оценки вариации однородных совокупностей. Недостаток – неприемлемость для неоднородных совокупностей с редкими выбросами крайних значений признака.

Частично недостатки этого показателя устраняет межквартельный размах:

. Однако, он характеризует вариацию только половины совокупности.

Для учета колеблемости всех значений признака применяют показатели среднего линейного отклонения, дисперсии и средне квадратического отклонения.

Средне линейное отклонение – среднее значение отклонений всех вариантов ряда от средней арифметической (иногда от моды или медианы):

- для несгруппированных данных;

- для сгруппированных данных.

Аналогичным по смыслу среднему линейному отклонению является показатель дисперсии и рассчитываемый на его основе показатель средне квадратического отклонения.

Дисперсия – рассеивание, данный показатель характеризует рассеивание значений признака относительно его средней величины.

- для несгруппированных данных;

- для сгруппированных данных.

Дисперсия – средне квадратическое отклонение всех вариантов ряда от средней арифметической. Если извлечь квадратный корень из дисперсии, получим средне квадратическое отклонение.

- для несгруппированных данных;

- для сгруппированных данных.

Несмотря на логическое сходство, дисперсия является более чувствительной к вариации и, следовательно, чаще применяемый показатель.

3. Прямой способ расчета показателей вариации.

Расчет показателей вариации заработной платы работников завода.

Группы со среднемесячной з/п, руб.

Число раб-в,

До 1500

30

750

22500

1909,09

57272,7

3644628

109338843

1501-3000

75

2250

168750

409,09

30681,8

167355

12551653

3001-4500

45

3750

168750

1090,91

49090,9

1190083

53553719

Свыше 4501

15

5250

78750

2590,91

38863,6

6712810

100692149

Итого

165

438750

175909

276136364