Смекни!
smekni.com

Статистика (стр. 15 из 21)

В нашем примере

удобнее всего рассчитывать по формуле:

Параметры уравнения регрессии надежны, следовательно, с вероятностью 0,95 можно утверждать, что полученное уравнение регрессии

объективно отражает форму зависимости между ценой и объемом продаж лука.

По данным регрессионного анализа можно рассчитать коэффициент эластичности, характеризующий пропорцию взаимосвязи между вариацией факторного и результативного признаков.

Коэффициент эластичности показывает, что с ростом цены на 1%, объем реализации лука снижается на 1,7%.

4. Измерения тесноты связи.

Методы измерения тесноты взаимосвязи условно делятся на непараметрические и параметрические.

Непараметрические методы применяются для измерения тесноты связи качественных и альтернативных признаков, а так же количественных признаков, распределение которых отличается от нормального распределения.

Для измерения связи альтернативных признаков применяются коэффициент ассоциации Дэвида Юла и коэффициент контингенции Карла Пирсона. Для расчета этих показателей применяется следующая матрица взаимного распределения частот.

a, b, c, d – частоты взаимного распределения признаков.

1 признак 2 признак

ДА

НЕТ

ДА

a

b

НЕТ

c

d

При прямой связи частоты сконцентрированы по диагонали a-d, при обратной связи по диагонали b-c, при отсутствии связи частоты практически равномерно распределены по всему полю таблицы.

Коэффициент ассоциации

Пример: проанализируем зависимость между полом и фактом совершения покупки посетителями магазина.

1 признак 2 признак

М

Ж

Итого

Купил

24

32

56

Не купил

16

28

44

Итого

40

60

Наблюдается очень слабая прямая связь между полом и фактом свершения покупки. Предельное абсолютное значение коэффициента может быть близко к единице.

Коэффициент ассоциации непригоден для расчета в том случае, если одна из частот по диагонали равна 0. В этом случае применяется коэффициент контингенции, который рассчитывается по формуле:

Коэффициент контингенции также указывает на практическое отсутствие связи между признаками (его величина всегда меньше Кас).

Если значения признака распределены более чем по 2 группам, то для определения тесноты связи применяют коэффициенты взаимной сопряженности признаков Пирсона, Чупрова и др.

Показатель Пирсона определяется по формуле

, где
- показатель взаимной сопряженности признаков, который рассчитывается на основе матрицы взаимного распределения частот.
1 гр. 2 гр. 3 гр. Итого
1 гр.

s11

s12

s13

n1

2 гр.

s21

s22

s23

n2

3 гр.

s31

s32

s33

n3

Итого

m1

m2

m3


Пример: рассмотрим зависимость между величиной магазина и формой обслуживания.

Самообслуживание Традиционное Итого
Мелкие магазины

12

45

57

Средние

19

10

29

Крупные

14

4

18

Итого

45

59

Коэффициент свидетельствует о наличии заметной связи между величиной магазина и формой его обслуживания. Более точным показателем тесноты связи является коэффициент Чупрова, который определяется по формуле:

, где
- соответственно число групп, выделенных по каждому признаку. В нашем примере:

Непараметрические методы измерения тесноты взаимосвязи количественных признаков были первыми из методов измерения тесноты взаимосвязи. Впервые попытался измерить тесноту связи в 30-ч годах 19 века французский ученый Гиррий. Он сопоставлял между собой среднегрупповые значения факторного и результативного признаков. При этом абсолютные значения заменялись их отношениями к некоторым константам. Полученные результаты ранжировались в порядке возрастания. О наличии или отсутствии связи Гиррий судил сопоставляя ранее по группам и подсчитывая количество совпадений и несовпадений рангов. Если преобладало число совпадений – связь считалась прямой. Несовпадение – обратной. При равенстве совпадений и несовпадений – связь отсутствовала.

Методика Гиррий была использована Фехнером при разработке своего коэффициента, а так же Спирменом при разработке коэффициента корреляции рангов.

Расчет коэффициента Фехнера.

Цена 1 кг

лука, руб.

Объем продаж,

кг

Знаки отклонений

Сравнение знаков

3

175

-2,5

59,1

н

3,5

200

-2

84,1

н

4

180

-1,5

64,1

н

4,5

150

-1

34,1

н

5

160

-0,5

44,1

н

5,5

120

0

4,1

с

6

85

0,5

-30,9

н

6,5

90

1

-25,9

н

7

50

1,5

-65,9

н

7,5

40

2

-75,9

н

8

25

2,5

-90,9

н

Коэффициент указывает на наличие весьма тесной обратной связи.

На ряду с коэффициентом Фехнера для измерения взаимосвязи количественных признаков применяются коэффициенты корреляции рангов. Наиболее распространенным среди них является коэффициент корреляции рангов Спирмена.

Пример: вычисление коэффициента Спирмена для измерения тесноты взаимосвязи между товарооборотом и уровнем издержек обращения в магазинах.

Однодневный товарооборот, тыс. руб.

Издержки

в % к товарообороту

Ранги

Разность рангов

18

20,5

1

4

-3

9

23

23,4

2

6

-4

16

29

21,2

3

5

-2

4

45

18,9

4

2

2

4

78

19,2

5

3

2

4

93

17,5

6

1

5

25

Всего

62