Смекни!
smekni.com

Ряды динамики (стр. 4 из 4)

При наличии тренда индекс сезонности определяется на основе методов , исключающих влияние тенденции . Порядок расчета следующий :

1) для каждого уровня определяют выравненные значения по тренду f(t);

2) рассчитывают отношения ;

3) при необходимости находят среднее из этих отношений для одноименных месяцев (кварталов) по формуле 34 :

,(Т -- число лет). (34)

Другим методом изучения уровня сезонности является гармонический анализ . Его выполняют , представляя временной ряд как совокупность гармонических колебательных процессов .

Для каждой точки этого ряда справедливо выражение , записанное в виде формулы 35 :

(35)

при t = 1, 2, 3, ... , Т.

Здесь -- фактический уровень ряда в момент (интервал) времени t;

f(t) – выравненный уровень ряда в тот же момент (интервал) t

-- параметры колебательного процесса (гармоники) с номером n , в совокупности оценивающие размах (амплитуду) отклонения от общей тенденции и сдвиг колебаний относительно начальной точки .

Общее число колебательных процессов , которые можно выделить из ряда , состоящего из Т уровней , равно Т/2. Обычно ограничиваются меньшим числом наиболее важных гармоник . Параметры гармоники с номером n определяются по формулам 36 –38 :

1) ; (36)

2)

(37)

при n=1,2,...,(T/2 – 1);

3) (38)

2.4 Анализ взаимосвязанных рядов динамики .

В простейших случаях для характеристики взаимосвязи двух или более рядов их приводят к общему основанию , для чего берут в качестве базисных уровни за один и тот же период и исчисляют коэффициенты опережения по темпам роста или прироста .

Коэффициенты опережения по темпам роста – это отношение темпов роста (цепных или базисных) одного ряда к соответствующим по времени темпам роста (также цепным или базисным) другого ряда . Аналогично находятся и коэффициенты опережения по темпам прироста .

Анализ взаимосвязанных рядов представляет наибольшую сложность при изучении временных последовательностей . Однако нередко совпадение общих тенденций развития может быть вызвано не взаимной связью , а прочими неучитываемыми факторами . Поэтому в сопоставляемых рядах предварительно следует избавиться от влияния существующих в них тенденций , а после этого провести анализ взаимосвязи по отклонениям от тренда . Исследование включает проверку рядов динамики (отклонений) на автокорреляцию и установление связи между признаками .

Под автокорреляцией понимается зависимость последующих уровней ряда от предыдущих . Проверка на наличие автокорреляции осуществляется по критерию Дарбина – Уотсона (формула 39) :

, (39)

где -- отклонение фактического уровня ряда в точке t от теоретического (выравненного) значения .

При К = 0 имеется полная положительная автокорреляция , при К = 2 автокорреляция отсутствует , при К = 4 – полная отрицательная автокорреляция . Прежде чем оценивать взаимосвязь , автокорреляцию необходимо исключить . Это можно сделать тремя способами .

1. Исключение тренда с авторегрессией. Для каждого из взаимосвязанных рядов динамики Х и У получают уравнение тренда (формулы 40) :

(40)

Далее выполняют переход к новым рядам динамики , построенным из отклонений от трендов , рассчитанным по формулам 41 :

(41)

Для последовательностей выполняется проверка на автокорреляцию по критерию Дарбина – Уотсона . Если значение К близко к 2 , то данный ряд отклонений оставляют без изменений . Если же К заметно отличается от 2 , то по такому ряду находят параметры уравнения авторегрессии по формулам 42 :

(42)

Более полные уравнения авторегрессии можно получить на основе анализа автокорреляционной функции , когда определяются число параметров () и соответствующие этим параметрам величины шагов .

Далее по формуле 43 подсчитываются новые остатки :

(t = 1, ... , Т) (43)

и , по формуле 44, коэффициент корреляции признаков :

. (44)

2. Корреляция первых разностей . От исходных рядов динамики Х и У переходят к новым , построенным по первым разностям (формулы 45) :

(45)

По DХ и DУ определяют по формуле 46 направление и силу связи в регрессии:

(46)

3. Включение времени в уравнение связи : .

В простейших случаях уравнение выглядит следующим образом (формула 47):

(47)

Из перечисленных методов исключения автокорреляции наиболее простым является второй , однако более эффективен первый .