Смекни!
smekni.com

Курсовая работа (стр. 6 из 6)

d 2y = 4,9 / 50 = 0,098 (балла)2

E2y= (åб2yijI) / åjI

E2y = 12,33 / 50 = 0,25 (балла)2

б2y = E2y + d 2y = 0,35 (балла)2

r2 = d 2y / б2y = 0,098 / 0,35 = 0,28 (0,28%)

r = 0,53

построение аналитической регрессии.

yx = a + bx

xy = (åxyjI) / åjI

xy = 15,2

б2x = 7,2 (ч/нед)2

b = (xy – x y) / б2x = (15,2 – 3,5 × 4,0) / 7,2 = 0,16

a = y – bx = 4,0 – 0,16 × 3,4

Линейное уравнение регрессии зависимости среднего балла зачётки за 1 курс от подготовки к семинарским занятиям:

yx = 2,96 + 0,068х

x = 0 y = 3,4

x = 7 y = 4,5

rxy = (xy – x y) / бxбy = (15,2 – 14) / 2,6 = 0,46


Корреляционное поле

Эмпирическая линия регрессии

Аналитическая линия регрессии

Распределение среднего балла зачётки за 1 курс по признаку-фактору—подготовке к семинарским занятиям.

Вывод: r2 свидетельствует о том, что 28% общей вариации результативного признака вызвано влиянием признака фактора—подготовкой к семинарским занятиям. Остальные 72% - вызваны влиянием прочих факторов. Можно сказать, что это слабая корреляционная зависимость. Интерпретируя параметр b, предполагаем, что для данной совокупности студентов с увеличением подготовки к занятиям на 1 курсе на 1 ч/нед средний балл зачётки увеличивается на 0,16 балла. rxy говорит о том, что между признаком-результатом и признаком-фактором есть умеренная линейная связь.


Рассматриваю третью пару признаков:

Расчётная таблица № 3

Таблица 4

Самообразование (ч/нед)

Число наблюдений

xi

yi

dyi

d2yi

d2yi ji

yi - y

(yi–y)2ji

0

25

0

4,07

0,68

0,46

11,5

-0,03

0,022

2

8

2

4,38

0,3

0,09

0,72

0,28

0,62

3

2

3

4,40

0,2

0,04

0,08

0,3

0,18

4

6

4

4,22

0,5

0,25

1,5

0,12

0,08

5

2

5

3,35

0,35

0,12

0,24

-0,75

1,16

6

7

6

3,3

0,40

0,16

1,12

0,2

0,28

Сумма

50

-

-

-

-

15,88

-

2,34

средняя

-

1,96

4,1

-

-

0,31

-

0,39

d2y = (å(yi–y)2jI)

d 2y = 2,34 / 50 = 0,046 (балла)2

E2y= (åб2yijI) / åjI

E2y = 15,88 / 50 = 0,31 (балла)2

б2y = E2y + d 2y = 0,31 + 0,046 = 0,36 (балла)2

r2 = d 2y / б2y = 0,046 / 0,36 = 0,13 (13%)

r = 0,36

построение аналитической регрессии.

yx = a + bx

xy = (åxyjI) / åjI

xy = 8,22

б2x = 5,1 (ч/нед)2

b = (xy – x y) / б2x = (8,22 – 8,036) / 5,1 = 0,032

a = y – bx = 4,1 – 0,032 × 1,96 = 4,03

Линейное уравнение регрессии зависимости среднего балла зачётки за 1 курс от самообразования:

yx = 2,96 + 0,068х

x = 0 y = 3,4

x = 7 y = 4,5

rxy = (xy – x y) / бxбy = (8,2 – 8,036) / 2,25 × 0,6 = 0,12


Корреляционное поле

Эмпирическая линия регрессии

Аналитическая линия регрессии

Вывод: r2 свидетельствует о том, что 13% общей вариации результативного признака вызвано влиянием признака фактора—самообразованием. Можно сказать, что это очень слабая корреляционная связь. Зная коэффициент b, предполагаем, что для данной совокупности студентов с увеличением самообразования на 1 ч/нед средний балл зачётки увеличивается на 0,032 балла. rxy говорит о том, что между признаком-результатом и признаком-фактором есть слабая прямая линейная связь.


Министерство Высшего Образования РФ

Санкт-Петербургский Государственный Инженерно-Экономический Университет

Лабораторные работы

По статистике

Студентки 1 курса

Группы 3292

Специальность коммерция

Харькиной Анны.

Преподаватель: Карпова Г. В.

Оценка:

СПб 2001