коэффициент Чупрова более строже оценивает тесноту связи.
§6. Множественная корреляция.
Изучение связи между результативным и двумя или более факторными признаками называется множественной регрессией. При исследовании зависимостей методами множественной регрессии ставят 2 задачи.
- определение аналитического выражения связи между результативным признаком у и фактическими признаками х1, х2, х3, …хк, т.е. найти функцию у=f(х1, х2, …хк)
- Оценка тесноты связи между результативным и каждым из факторных признаков.
Корреляционно-регрессионная модель (КРМ) – такое уравнение регрессии, которое включает основные факторы, влияющие на вариацию результативного признака.
Построение модели множественной регрессии включает этапы:
- выбор формы связи
- отбор факторных признаков
- обеспечение достаточного объема совокупности для получения верных оценок.
I. все множество связей между переменными, встречающиеся на практике достаточно полно описывается функциями 5-ти видов:
- линейная:
- степенная:
- показательная:
- парабола:
- гипербола:
хотя все 5 функций присутствуют в практике КРА, наиболее часто используется линейная зависимость, как наиболее простая и легко поддающаяся интерпретации уравнение линейной зависимости:
, к – множество факторов включающихся в уравнение,
bj – коэффициент условно-чистой регрессии, который показывает среднее по совокупности отклонение результативного признака от его среднего значения при отклонении фактора
xjот своей средней величины на единицу при условии, что все остальные факторы, входящие в уравнение сохраняют средние значения.
Параметры уравнения множественной регрессии и определение с помощью МНК.
Пример:
0 – т.к. >0,7 следовательно на них обращаем особое внимание
ЭКО. Шкала тесноты связи:
Если связь 0 – 0,3 – слабая связь
0,3 – 0,5 – заметная
0,3 – 0,5 – тесная
0,7 – 0,9 – высокая
более 0,9 – весьма высокая
затем сравниваем два признака (доход и пол) <0,7, то включаем в уравнение множественной регрессии.
Отбор факторов для включения в уравнение множественной регрессии:
- между результативным и фактическим признаками должна быть причинно-следственная зависимость.
- результативный и фактический признаки должны быть тесно связаны между собой иначе возникает явление мультиколлинеарности (>06), т.е. включенные в уравнение факторные признаки влияют не только на результативный, но друг на друга, что влечет к неверной интерпретации числовых данных.
Методы отбора факторов для включения в уравнение множественной регрессии:
1. экспертный метод – основан на интуитивно логическом анализе который выполняется высококвалифицированными экспертами.
2. использование матриц парных коэффициентов корреляции осуществляется параллельно с первым методом, матрица симметрична относительно единичной диагонали.
3. пошаговый регрессионный анализ – последовательное включение факторных признаков в уравнение регрессии и проверки значимости проводится на основании значений двух показателей на каждом шаге. Показатель корреляции, регрессии.
Показатель корреляции: рассчитывают изменение теоретической корреляции отношения или изменение средней остаточной дисперсии. Показатель регрессии – изменение коэффициента условно чистой регрессии.
Пример расчета: