Смекни!
smekni.com

Курс лекций за первый семестр (стр. 9 из 9)

коэффициент Чупрова более строже оценивает тесноту связи.

§6. Множественная корреляция.

Изучение связи между результативным и двумя или более факторными признаками называется множественной регрессией. При исследовании зависимостей методами множественной регрессии ставят 2 задачи.

  1. определение аналитического выражения связи между результативным признаком у и фактическими признаками х1, х2, х3, …хк, т.е. найти функцию у=f(х1, х2, …хк)
  2. Оценка тесноты связи между результативным и каждым из факторных признаков.

Корреляционно-регрессионная модель (КРМ) – такое уравнение регрессии, которое включает основные факторы, влияющие на вариацию результативного признака.

Построение модели множественной регрессии включает этапы:

  1. выбор формы связи
  2. отбор факторных признаков
  3. обеспечение достаточного объема совокупности для получения верных оценок.

I. все множество связей между переменными, встречающиеся на практике достаточно полно описывается функциями 5-ти видов:

  1. линейная:
  2. степенная:
  3. показательная:
  4. парабола:
  5. гипербола:

хотя все 5 функций присутствуют в практике КРА, наиболее часто используется линейная зависимость, как наиболее простая и легко поддающаяся интерпретации уравнение линейной зависимости:

, к – множество факторов включающихся в уравнение, bj – коэффициент условно-чистой регрессии, который показывает среднее по совокупности отклонение результативного признака от его среднего значения при отклонении фактора xjот своей средней величины на единицу при условии, что все остальные факторы, входящие в уравнение сохраняют средние значения.

Параметры уравнения множественной регрессии и определение с помощью МНК.

Пример:


0 – т.к. >0,7 следовательно на них обращаем особое внимание

ЭКО. Шкала тесноты связи:

Если связь 0 – 0,3 – слабая связь

0,3 – 0,5 – заметная

0,3 – 0,5 – тесная

0,7 – 0,9 – высокая

более 0,9 – весьма высокая

затем сравниваем два признака (доход и пол) <0,7, то включаем в уравнение множественной регрессии.

Отбор факторов для включения в уравнение множественной регрессии:

  1. между результативным и фактическим признаками должна быть причинно-следственная зависимость.
  2. результативный и фактический признаки должны быть тесно связаны между собой иначе возникает явление мультиколлинеарности (>06), т.е. включенные в уравнение факторные признаки влияют не только на результативный, но друг на друга, что влечет к неверной интерпретации числовых данных.

Методы отбора факторов для включения в уравнение множественной регрессии:

1. экспертный метод – основан на интуитивно логическом анализе который выполняется высококвалифицированными экспертами.

2. использование матриц парных коэффициентов корреляции осуществляется параллельно с первым методом, матрица симметрична относительно единичной диагонали.

3. пошаговый регрессионный анализ – последовательное включение факторных признаков в уравнение регрессии и проверки значимости проводится на основании значений двух показателей на каждом шаге. Показатель корреляции, регрессии.

Показатель корреляции: рассчитывают изменение теоретической корреляции отношения или изменение средней остаточной дисперсии. Показатель регрессии – изменение коэффициента условно чистой регрессии.

Пример расчета:

Ниже среднего

Среднее

Выше среднего

Итого

Ниже среднего 12 7 3 22
Средний 15 10 9 34
Выше среднего 3 15 10 29
Итого 31 32 22 85