Смекни!
smekni.com

Курс лекций за первый семестр (стр. 7 из 9)

- поправка на бес повторность.

Для каждого вида выборочного наблюдения представленная ошибка, рассчитываются по разному:

  1. собственно случайное и механическое наблюдение
    ;
  2. Районированное наблюдение

  1. Серийная выборка

r – количество серий в выборке;

R – количество серий в генеральной совокупности;

;

- меж групповая дисперсия доли.

§4. Задачи выборочного наблюдения

Применяется для следующих задач:

  1. n - ? для определения объема выборки по известной F(t), Dx.
  2. определение Dx выборки по известной F(t), n
  3. определение F(t) по известным Dx и n

1 задача n - ? Сначала n определяется по формуле повторного отбора

,
для бесповторного отбора:

Способы для определения дисперсии:

  1. ее берут из предыдущих аналогичных исследований.
  2. СКО»
  3. СКО при нормальном распределении » 1/6 размаха вариации.
  4. если распределение заведомо асимметричное, то СКО » 1/5 размаха вариации
  5. Для доли применяется дисперсия максимально возможная р(1-р)=0,25
  6. при n³100, то s2=S2 – выборочная дисперсия

30£ n £100, то s2=S2(n/n-1), s2 – генеральная дисперсия

n<30, то S2 ( малая, т.к. дисперсия выборочная) и все расчеты ведутся по S2

При расчете n не следует гнаться за большим значением t и за малыми предельными ошибками, т.к. это ведет к увеличению n следовательно, к увеличению затрат. По следующему закону аналогично.

§5. Распространение данных выборочного наблюдения на генеральную совокупность.

Конечной целью любого ВН является характеристика генеральной совокупности.

Величины, рассчитанные по результатам ВН распространяются на генеральную совокупность с учетом предела их предельной ошибки.

Предположим, что потребление йогурта в месяц одним человеком.

250-20£m£250+20; 230£m£270

А всего 1000 человек

230000£m£270000

Для доли

p-Dp£p£p+Dp

48%-5%£p£48%+5%

43%£p£53%

§6. Малая выборка.

В практике статистического исследования в современных условиях все чаще приходится сталкиваться с небольшими по объему выборками.

Малая выборка – выборка наблюдения численность единиц которого не превышает 30, n£30/

Разработка теории малой выборки была проделана английским статистом Госсет, писавшим под псевдонимом student в 1908 году.

Он доказал, что оценка расхождения между средствами малой выборки и генеральной выборки имеет особый закон распределения. При расчетах по малой выборке величина s2 не рассчитывается. tст для возможных пределов ошибки пользуются критерием student. Стр.44-45.

- вероятность обратного события.

Количество степеней свободы

d.f=n-1,

предельная ошибка малой выборки

предельная ошибка доли

Тема 8: Корреляционно-регрессионный анализ и моделирование.

§1. Понятие корреляционной связи и КРА.

§2. Условия применения и ограничения КРА.

§3. Парная регрессия на основе метода наименьших квадратов.

§4. Применение парного линейного уравнения регрессии.

§5. Показатели тесноты связи и силы связи.

§6. Множественная корреляция.

§1. Понятие корреляционной связи и КРА.

Функциональная связь y=5x

Корреляционная связь

Различают 2 типа связей меду различными явлениями и их признаком функциональную и статистическую.

Функциональной называется такая связь когда с изменением значения одной из переменных вторая изменяется строго определенным образом, т.е., значению одной переменной соответствует одно или несколько точно заданных значений другой переменной. Функциональная связь возможна лишь в том случае, когда переменная у зависит от переменной х и не от каких других факторов не зависит, но в реальной жизни такое невозможно.

Статистическая связь существует в том случае, когда с изменением значения одной из переменных вторая может в определенных пределах принимать любые значения, но ее статистические характеристики изменяются по определенному закону.

Важнейший частный случай статистической связи – корреляционная связь. При корреляционной связи разным значениям одной переменной соответствуют различные средние значения другой переменной, т.е. с изменением значения признака х закономерным образом изменяется среднее значение признака у.

Слово корреляция ввел английский биолог и статист Френсис Галь (correlation)

Корреляционная связь может возникнуть разными путями:

  • причинная зависимость вариации результативного признака от вариации факторного признака.
  • Корреляционная связь может возникнуть между 2 следствиями одной причины (пожары, кол-во пожарников, размер пожара)
  • Взаимосвязь признаков каждый из которых и причина и следствие одновременно (производительность труда и з/плата)

В статистике принято различать следующие виды зависимости:

  1. парная корреляция – связь между 2мя признаками результативным и факторным, либо между двумя факторными.
  2. частная корреляция – зависимость между результативным и одним факторным признаком при фиксированном значении другого факторного признака.
  3. множественная корреляция – зависимость результативного признака от двух и более факторных признаков включенных в исследование.

Задачей корреляционного анализа является количественная оценка тесноты связи между признаками. В конце 19 века Гальтон и Пирсон исследовали зависимость между ростом отцов и детей.

Регрессия исследует форму связи. Задача регрессионного анализа – определение аналитического выражения связи.

Корреляционно-регрессионный анализ как общее понятие включает в себя изменение тесноты связи и установления аналитического выражения связи.

§2. Условия применения и ограничения КРА.

1. наличие массовых данных, т.к. корреляционная связь является статистической

2. необходима качественная однородность совокупности.

3. подчинение распределения совокупности по результативному и факторному признаку, нормальному закону распределения, что связано с применением метода наименьших квадратов.

§3. Парная регрессия на основе метода наименьших квадратов.

Регрессионный анализ заключается в определении аналитического выражения связи. По форме различают линейную регрессию, которая выражается уравнением прямой

, и не линейную регрессию
или
.

По направлению связи различают на прямую т.е. с увеличением признака х увеличивается признак у.


Обратная т.е. с увеличением х уменьшается у.

1. способ графический – нанеся эмпирические данные на поле корреляции, но более точная оценка производится с помощью метода наименьших квадратов.

2. МНК

Х – признак фактический

У - признак результативный

Разница между фактическим значением и значением рассчитанным по уравнению связи возведенное в квадрат должна стремиться к минимуму.

При МНК min сумма квадратов отклонений эмпирических значений у от теоретических полученных по выбранному уравнению регрессии.

Для линейной зависимости

для параболы

Для гиперболы

параметры a,b,c записываются в уравнение, затем подставляем полученное уравнение эмпирическое значение xi и находим теоретическое значение yi. Затем сравниваем yi теоретическое и yiэмпирическое. Сумма квадратов разности между ними должна быть минимальна. Выбираем тот вид зависимости при котором выполняется данная зависимость.