2. Относительное линейное отклонение
3. Коэффициент вариации
данные показатели дают не только сравнительную оценку но и образуют однородность совокупности. Совокупность считается однородной если коэффициент вариации не превышает 33%.
§6
На ряду с изучением вариации признака по всей совокупности в целом, часто бывает необходимо проследить количественные изменения признака, но группам, на которые делится совокупность и между ними. Эта достигается путем вычисления
разных видов.Виды дисперсии:
1. Общая дисперсия
2. Межгрупповая дисперсия
3. Внутригрупповая дисперсия (остаточная)
1. измеряет вариацию признака во всей совокупности под влиянием все факторов обусловивших данную вариацию
Пример: потребление йогурта: при выборке 100 человек
ВозрастДоход
Социальное положение
xi –индивидуальное значение признака
- среднее значение признака по всей совокупности - частота этого признака.2. характеризует вариацию признака под влиянием признака фактора положенного в основу группировки.
- средняя по группе - общая средняя по группе - частота по группе3.
характеризует вариацию признака под влиянием факторов не включенных в группировкуxij – i значение признака в j группе
- среднее значение признака в j группеfij – частота i-го признака в j группе
Существует правило которое связывает 3 вида дисперсии, оно называется правило сложения дисперсии.
- остаточная дисперсия по j группе - сумма частот по j группеn – общая сумма частот
§7
основная задача анализа вариационных рядов – выявление закономерности распределения частот.
Кривая распределения – графическое изображение в виде непрерывной линии изменения частот в вариационном ряду в функционально связанным изменением значения признака.
Кривую распределения можно построить с помощью полигона и гистограммы. Целесообразно свести эмпирическое распределение к теоретическому, к одному из хорошо изученных виду.
Кривая нормального распределения.
Различают следующие разновидности кривых распределения:
Для однородных совокупностей характерны одновершинные кривые, много вершинная кривая говорит о неоднородности совокупности и необходимости перегруппировки.
Выяснение общего характера распределения предполагает оценку его однородности, и расчет асимметрии и эксцесса. Для симметричных распределений
Для сравнительного изучения асимметрии различных распределений вычисляется коэффициент асимметрии As.
где - центральный момент третьего порядка; - СКО в кубе;Если
, то асимметрия значительнаяЕсли As<0, то As – левосторонняя, если As>0, то As – правосторонняя.
Если
, то As незначительная. Для симметричных и умеренно асимметричных рассчитывается показатель эксцесса: , если Ек>0, то распределение островершинное, если Ek<0, то распределение плосковершинное.§8.
Вариация альтернативного признака количественно проявляется следующим образом.
0 – единицы не обладающие данным признаком;
1 – единицы обладающие данным признаком;
Пусть:
р – доля единиц обладающих данным признаком;
q – доля единиц не обладающих данным признаком;
тогда p+q=1.
Альтернативный признак принимает 2 значения 0 и 1 с весами p и q.
;Прямые признаки – это такие признаки, величина которых увеличивается с увеличением исследуемого явления.
Обратные признаки – признаки, величина которых уменьшается с увеличением исследуемого явления.
Максимальная дисперсия доли равна 0,25.
Тема 6: Моделирование рядов распределения.
§1. Фактическое и теоретическое распределение
§2. Кривая нормального распределения.
§3. Проверка гипотезы о нормальном распределении.
§4. Критерии согласия: Пирсона, Романовского, Колмогорова.
§5. Практическое значение моделирования рядов распределения.
§1. Фактическое и теоретическое распределение
Одна из важнейших целей изучения рядов распределения состоит в том, чтобы выявить закономерность распределения и определить ее характер. Закономерности распределения наиболее отчетливо проявляются только при большом количестве наблюдений.
Фактическое распределение может быть изображено графически с помощью кривой распределения – графически изображается в виде непрерывной линии изменения частот в вариационном ряду функционально связанного с изменением варианта.
Под теоретической кривой распределения понимается кривая данного типа распределения в общем виде исключающего влияние случайных для закономерности факторов.
Теоретическое распределение может быть выражено аналитической формулой которая называется аналитической формулой. Наиболее распространенным является нормальное распространение.
§2. Кривая нормального распределения.
Закон нормального распределения:
;у – ордината нормального распределения
t – нормированное отклонение.
; е=2,7218; xi – варианты вариационного ряда; - среднее;Свойства:
Функция нормального распределения – четная, т.е. f(t)=f(-t),
. Функция нормального распределения полностью определяется и СКО.§3. Проверка гипотезы о нормальном распределении.
Причиной частого обращения к закону распределения является то, что зависимость возникающая в результате действия множества случайных причин ни одна из которых не является преобладающей. Если в вариационном ряду рассчитали Мо=Ме, то это может указывать на близость к нормальному распределению. Наиболее точная проверка соответствия нормальному закону производится с помощью специальных критериев.
§4. Критерии согласия: Пирсона, Романовского, Колмогорова.
Критерий Пирсона.
- теоретическая частота - эмпирическая частотаМетодика расчета теоретических частот.
l – длина интервала