Смекни!
smekni.com

Корреляционные моменты. Коэффициент корреляции (стр. 2 из 3)

Одной из важнейших характеристик случайной величины нормального распределения является математическое ожидание.

Рассмотрим дискретную случайную величину Х, имеющую возможные значения Х1, Х2, ... , Хn с вероятностями р1, р2, ... , рn. нам требуется охарактеризовать каким-то числом положение значений случайной величины на оси абсцисс с учетом того, что эти значения имеют различные значения. Для этой цели обычно пользуются так называемым "средним взвешенным" из значений Хi, причем каждое значение Хi при осреднении должно учитываться с "весом", пропорциональным вероятности этого значения. Таким образом, если обозначить "среднее взвешенное" через М[X] или mx, получим

или, учитывая, что

, то

(1).

Математическим ожиданием случайной величины называется сумма произведений всех возможных значений случайной величины на вероятности этих значений.

Для большей наглядности рассмотрим одну механическую интерпретацию введенного понятия. Пусть на оси абсцисс расположены точки с абсциссами х1, х2, …, хn, в которых сосредоточены соответственно массы р1, р2, … , рn, причем

. Тогда математическое ожидание есть не что иное, как абсцисса центра тяжести данной системы материальных точек.

Формула (1) для математического ожидания соответствует случаю дискретной случайной величины. Для непрерывной величины Х математическое ожидание, естественно, выражается не суммой, а интегралом:

(2),

где

- плотность распределения величины Х.

Формула (2) получается из формулы (1), если в ней заменить отдельные значения Хi непрерывно изменяющимся параметром Х, соответствующие вероятности рi элементом вероятности f(x)dx, конечную сумму - интегралом.

В механической интерпретации математическое ожидание непрерывной случайной величины сохраняет тот же смысл - абсциссы центра тяжести в случае, когда масса распределения по оси абсцисс непрерывна с плотностью f(x).

Следует отметить, что математическое ожидание существует не для всех случайных величин, что, однако, по мнению некоторых ученых, не представляет для практики существенного интереса.

Помимо математического ожидания важное значение имеют также другие числовые случайной величины - моменты.

Понятие момента широко применяется в механике для описания распределения масс ( статистические моменты, моменты инерции и т.д.). Совершенно теми же приемами пользуются в теории вероятностей для описания основных свойств распределения случайной величины. Чаще всего применяются на практике моменты двух видов: начальные и центральные.

Начальным моментом s-го порядка прерывной случайной величины Х называется сумма вида

Очевидно это определение совпадает с определением начального момента порядка s в механике, если на оси абсцисс в точках х1, …, хn сосредоточена масса р1, …, рn.

Для непрерывной случайной величины Х начальным моментом s-го порядка называется интеграл

Очевидно, что

,

т.е. начальный момент s-го порядка случайной величины Х есть не что иное, как математическое ожидание s-ой степени этой случайной величины.

Перед тем как дать определение центрального момента введем понятие "центрированной случайной величины".

Пусть имеется случайная величина Х с математическим ожиданием mx. Центрированной случайной величиной, соответствующей величине Х, называется отклонение случайной величины Х от её математического ожидания

Нетрудно видеть, что математическое ожидание центрированной случайной величины равно нулю.

Центрирование случайной величины равносильно переносу начала координат в точку, абсцисса которой равна математическому ожиданию.

Центральным моментом порядка s случайной величины Х называется математическое ожидание s-ой степени соответствующей центрированной случайной величины:

.

Для прерывной случайной величины s-й центральный момент выражается суммой

,

а для непрерывной - интегралом

.

Важнейшее значение имеет второй центральный момент, который называют дисперсией и обозначают D[X]. Для дисперсии имеем

.

Дисперсия случайной величины есть характеристика рассеивания, разбросанности значений случайной величины около её математического ожидания. Само слово "дисперсия" означает "рассеивание".

Механической интерпретацией дисперсии является не что иное, как момент инерции заданного распределения масс относительно центра тяжести.

На практике часто применяется также величина

,

называемая средним квадратичным отклонением (иначе - "стандартом") случайной величины Х.

Теперь перейдем к рассмотрению характеристик систем случайных величин.

Начальным моментом порядка k,s системы (Х, Y) называется математическое ожидание произведения Xk и Ys,

xk,s=M[XkYs].

Центральным моментом порядка k,s системы (Х, Y) называется математическое ожидание произведения k-ой и s-ой степени соответствующих центрированных величин:

,

где

,
.

Для прерывных случайных величин

,

где рij - вероятность того , что система (Х, Y) примем значения (xi, yj), а сумма рассматривается по всем возможным значениям случайных величин X,Y.

Для непрерывных случайных величин

,

где f(x,y) - плотность распределения системы.

Помимо чисел k и s, характеризующих порядок момента по отношению к отдельным величинам, рассматривается ещё суммарный порядок момента k+s, равный сумме показателей степеней при Х и Y. Соответственно суммарному порядку моменты классифицируют на первый, второй и т.д. На практике обычно применяются только первые и вторые моменты.

Первые начальные моменты представляют собой математические ожидания величин Х и Y, входящих в систему

σ1,0=mx σ0,1=my.

Совокупность математических ожиданий mx , my представляет собой характеристику положения системы. Геометрически это координаты средней точки на плоскости, вокруг которой происходит рассеивание точки (Х, Y).

Важную роль на практике играют также вторые центральные моменты систем. Два из них представляют собой дисперсии величин Х и Y

,

характеризующие рассеивание случайной точки в направлении осей Ox и Oy.

Особую роль играет второй смещенный центральный момент:

,

называемый корреляционным моментом (иначе - "моментом связи")случайных величин Х и Y.

Корреляционный момент есть характеристика системы случайных величин, описывающая, помимо рассеивания величин Х и Y, еще и связь между ними. Для того, чтобы убедиться в этом отметим, что корреляционный момент независимых случайных величин равен нулю.

Заметим, что корреляционный момент характеризует не только зависимость величин, но и их рассеивание. Поэтому для характеристики связи между величинами (Х;Y) в чистом виде переходят от момента Kxy к характеристике

, (3)

где σx, σy - средние квадратичные отклонения величин Х и Y. Эта характеристика называется коэффициентом корреляции величин Х и Y.

Из формулы (3) видно, что для независимых случайных величин коэффициент корреляции равен нулю, так как для таких величин kxy=0.

Случайные величины, для которых rxy=0, называют некоррелированными (несвязанными).

Отметим однако, что из некоррелированности случайных величин не следует их независимость.