непроизводственного назначения :
Среднегодовой темп прироста :
(следовательно в среднем общий объем капитальных вложений за 5 лет снизился на 18%.)
(следовательно в среднем объем капитальных вложений производственного назначения снизился на 20%)
(следовательно в среднем объем капитальных вложений непроизводственного назначения снизился на 15%)
3.
Следовательно в ближайший год в среднем общий объем капитальных вложений сократится на 18,66 млрд. руб. и составит сумму от43,6 млрд. руб. до 51 млрд. руб.
4. А теперь мы при помощи метода аналитического выравнивания заменим эмпирический динамический ряд условным теоретическим динамическим рядом, так как он наиболее подходяще выглядит к формулам на основе прямой.
Показатель теоретического ряда рассчитывается при помощи метода наименьших квадратов.
Показатели | 1-й | 2-й | 3-й | 4-й | 5-й | å |
Кап. вложения | 136,95 | 112,05 | 84,66 | 74,7 | 62,3 | 470,66 |
t | -2 | -1 | 0 | 1 | 2 | 0 |
y*t | -273,9 | -112,05 | 0 | 74,7 | 124,6 | -186,65 |
t2 | 4 | 1 | 0 | 1 | 4 | 10 |
а = 470,66 : 5 = 94,1 b = -186,65 : 10 = -18,7
По данным графика можно сделать вывод, что общий объем капиталовложений имеет тенденцию к снижению.
Расчет прогноза проведен с помощью следующих этапов :
- значение верхней границы подсчитан по формуле среднего темпа роста.
- значение нижней границы выявлено следующим образом : в уравнение прямой y(t) = 94,1 - 18,7t подставили значение t =3 потому что прогноз выполнялся на год вперед, значит tусл= 3
- прогнозируемое значение рассчитали по формуле среднего абсолютного прироста.
Задача № 4
Имеются следующие данные по двум предприятиям отрасли :
Предприятие | Реализовано продукции тыс. руб. | Среднесписочная численность рабочих, чел. | ||
1 квартал | 2 квартал | 1 квартал | 2 квартал | |
I | 540 | 544 | 100 | 80 |
II | 450 | 672 | 100 | 120 |
Определите :
1. Уровни и динамику производительности труда рабочих каждого предприятия.
2. Для двух предприятий вместе :
(a) индекс производительности труда переменного состава;
(b) индекс производительности труда фиксированного состава;
(c) индекс влияния структурных изменений в численности рабочих на динамику средней производительности труда;
(d) абсолютное и относительное изменение объема реализации продукции во 2 квартале (на одном из предприятий ) в результате изменения :
1) численности рабочих;
2) уровня производительности труда;
3) двух факторов вместе.
Покажите взаимосвязь между исчисленными показателями.
Решение :
1. Построим расчетную таблицу, где реализованную продукцию в первом квартале обозначим V0, а во втором как V1 и среднесписочную численность как S0 и S1.
Предприятие | V0=W0*S0 Тыс. руб. | V1=W1*S1 Тыс. руб. | S0 Чел. | S1 Чел. | W0=V0:S0 Руб. | W1=V1:S1 Руб. | Iw=W1:Wo Руб. | W0S0 | D0=S0: åT0 Чел | D1=S1: åT1 Чел | W0D0 | W1D1 | W0D1 |
I | 540 | 544 | 100 | 80 | 5,4 | 6,8 | 1,3 | 432 | 0,5 | 0,4 | 2,7 | 2,72 | 2,16 |
II | 450 | 672 | 100 | 120 | 4,5 | 5,6 | 1,2 | 540 | 0,5 | 0,6 | 2,25 | 3,36 | 2,7 |
å | 990 | 1216 | 200 | 200 | 972 | 1 | 1 | 4,95 | 6,08 | 4,86 |
получаем : Jw=6,08 : 4,95=1,22
Индекс показывает изменение среднего уровня производительности труда в однородной совокупности под влиянием двух факторов :
1) изменение качественного показателя W (производительности труда) у отдельных предприятий;
2) изменение доли, с которой каждое значение W входит в общий объем совокупности.
Индекс показывает изменение среднего уровня только под влиянием изменения индивидуальных значений качественного показателя в постоянной структуре.
(в) Для расчета индекса влияния структурных изменений в численности рабочих на динамику средней производительности труда используем следующую формулу :
получаем : Jw(d)=4,86 : 4,95 = 0,98
получаем : Jw=6,08 : 4,95=1,22
(г) Произошедшее абсолютное и относительное изменение объема продукции во 2-м квартале зависело от следующих факторов :
- численность рабочих :
Dq(S) = (S1-S0)W0
получаем : Dq(S) = (80 – 100) * 5,4 = -108
- уровень производительности труда :
Dq(W) = (W1-W0)S1
получаем : Dq(W) = (6,8 – 5,4) * 80 = 112
- обоих факторов вместе :
Dq = Dq(S) + Dq(W)
получаем : Dq = -108 + 112 =4
Вывод : Поскольку индекс производительности труда переменного состава равен 1,22 или 122%, значит, средняя производительность труда по двум предприятиям возросла на 22%. Индекс производительности труда фиксированного состава равен 1,25 или 125%, значит, средняя производительность труда по двум предприятиям возросла на 25%. Индекс структурных сдвигов равен 0,98 или 98%, значит, средняя производительность труда по двум предприятиям снизилась на 2% за счет изменения структуры.
При условии, что произошедшие изменения производительности труда не сопровождались бы структурными перераспределениями среднесписочной численности рабочих в 1-м и 2-м квартале, то средняя производительность труда по двум предприятиям возросла бы на 25%. Изменение численности рабочих привело к снижению производительности труда на 2%. Но одновременное воздействие двух факторов увеличило среднюю производительность труда по двум предприятиям на 22%.