Также объем генеральной совокупности можно определить из условия задачи, так как выборка 10% -тная и в выборку вошло 30 предприятий:
30 предприятий – 10%
Х – 100%
10х=3000
х=300 предприятий, следовательно N=300
Следовательно с вероятностью 0,954 можно утверждать, что доля предприятий со средней прибылью > 16,6 млн. руб будет находиться в следующих пределах:
33% ± 16,3% или 16,7 £ w £ 49,3%
Задача № 2
по данным задачи №1
1. Методом аналитической группировки установите наличие и характер корреляционной связи между стоимостью произведенной продукции и суммой прибыли на одно предприятие. (результаты оформите рабочей и аналитической таблицами.)
2. Измерьте тесноту корреляционной связи между стоимостью произведенной продукции и суммой прибыли эмпирическим корреляционным отношением.
Сделайте выводы.
Решение:
1.
Где К – число выделенных интервалов.
Получаем :
В итоге у нас получаются следующие интервалы :
41 – 53; 53 – 65; 65 – 77; 77 – 89; 89 – 101
Строим рабочую таблицу.
№ группы | Группировка предприятий по объему продукции, млн.руб. | № предприятия | Выпуск продукции млн.руб Х | Прибыль млн.руб. У | У2 |
I | 41-53 | 3 | 41 | 12,1 | 146,41 |
7 | 45 | 12,8 | 163,84 | ||
12 | 48 | 13 | 169 | ||
16 | 52 | 14,6 | 213,16 | ||
S | 4 | 186 | 52,5 | 692,41 | |
В среднем на 1 предприятие | 46,5 | 13,1 | |||
II | 53-65 | 1 | 65 | 15.7 | 264.49 |
4 | 54 | 13.8 | 190,44 | ||
8 | 57 | 14.2 | 201,64 | ||
13 | 59 | 16.5 | 272,25 | ||
17 | 62 | 14.8 | 219,04 | ||
22 | 64 | 15 | 225 | ||
S | 6 | 361 | 90 | 1372,86 | |
В среднем на 1 предприятие | 60,1 | 15 | |||
III | 65-77 | 5 | 66 | 15,5 | 240,25 |
9 | 67 | 15,9 | 252,81 | ||
14 | 68 | 16,2 | 262,44 | ||
18 | 69 | 16,1 | 259,21 | ||
20 | 70 | 15,8 | 249,64 | ||
21 | 71 | 16,4 | 268,96 | ||
23 | 72 | 16,5 | 272,25 | ||
25 | 73 | 16,4 | 268,96 | ||
26 | 74 | 16 | 256 | ||
28 | 75 | 16,3 | 265,69 | ||
30 | 76 | 17,2 | 295,84 | ||
S | 11 | 781 | 178,3 | 2892,05 | |
В среднем на 1 предприятие | 71 | 16,2 | |||
IV | 77-89 | 2 | 78 | 18 | 324 |
6 | 80 | 17,9 | 320,41 | ||
10 | 81 | 17,6 | 309,76 | ||
15 | 83 | 16,7 | 278,89 | ||
19 | 85 | 16,7 | 278,89 | ||
24 | 88 | 18,5 | 342,25 | ||
S | 6 | 495 | 105,4 | 1854,2 | |
В среднем на 1 предприятие | 82,5 | 17,6 | |||
V | 89-101 | 11 | 92 | 18,2 | 331,24 |
27 | 96 | 19,1 | 364,81 | ||
29 | 101 | 19,6 | 384,16 | ||
S | 3 | 289 | 56,9 | 1080,21 | |
В среднем на 1 предприятие | 96,3 | 18,9 | |||
S | ИТОГО | 2112 | 483,1 | ||
В среднем | 71,28 | 16,16 |
Теперь по данным рабочей таблицы строим итоговую аналитическую таблицу:
Группы предприятий по объему продукции, млн.руб | Число пр-тий | Выпуск продукции, млн.руб. | Прибыль, млн.руб | ||
Всего | В среднем на одно пр-тие | Всего | В среднем на одно пр-тие | ||
41-53 | 4 | 186 | 46,5 | 52,5 | 13,1 |
53-65 | 6 | 361 | 60,1 | 90 | 15 |
65-77 | 11 | 781 | 71 | 178,3 | 16,2 |
77,89 | 6 | 495 | 82,5 | 105,4 | 17,6 |
89-101 | 3 | 289 | 96,3 | 56,9 | 18,9 |
S | 30 | 2112 | 356,4 | 483,1 | 80,8 |
По данным аналитической таблицы мы видим, что с приростом объема продукции, средняя прибыль на одно предприятие возрастает. Значит, между исследуемыми признаками существует прямая корреляционная зависимость.
2. Строим расчетную таблицу :
Группы предприятий по объему продукции, млн.руб | Число пр-тий fk | Прибыль, млн.руб | (уk-у) 2 fk | у2 | |
Всего | В среднем на одно пр-тие Yk | ||||
41-53 | 4 | 52,5 | 13,1 | 36 | 692,41 |
53-65 | 6 | 90 | 15 | 7,3 | 1372,86 |
65-77 | 11 | 178,3 | 16,2 | 0,11 | 2892,05 |
77,89 | 6 | 105,4 | 17,6 | 13,5 | 1854,2 |
89-101 | 3 | 56,9 | 18,9 | 23,5 | 1080,21 |
S | 30 | 483,1 | 80,8 | 80,41 | 7891,73 |