Смекни!
smekni.com

Графическое представление данных в статистике (стр. 4 из 6)

1992г.: 78 • 3,6° = 280,8°; 1,8 • 3,6° = 6,5°; 20 • 3,6° = 72°;

0,2 • 3,6° = 0,7°;

1993г.: 49-3,6° =176,4°; 31-3,6° = 111,6°; 16 • 3,6° = 57,6°;

4 • 3,6° = 14,4°.

Рис. 5.17. Динамика доли негосударственного сектора экономики в розничной торговле (в % к общему объему розничного товарооборота в России)

По найденным значениям углов круги делятся на соответству­ющие секторы (рис. 5.17).

Применение секторных диаграмм позволяет не только графи­чески изобразить структуру совокупности и ее изменение, но и по­казать динамику численности этой совокупности. Для этого стро­ятся круги, пропорциональные объему изучаемого признака, а за­тем секторами выделяются его отдельные части.

Рассмотренные способы графического изображения структуры совокупности имеют как достоинства, так и недостатки.

Так, секторная диаграмма сохраняет наглядность и выразитель­ность лишь при небольшом числе частей совокупности, в против­ном случае ее применение малоэффективно. Кроме того, нагляд­ность секторной диаграммы снижается при незначительных изме­нениях структуры изображаемых совокупностей: она выше, если имеются существенные различия сравниваемых структур. Преиму­ществом столбиковых (ленточных) структурных диаграмм по срав­нению с секторными являются их большая емкость, возможность отразить более широкий объем полезной информации.

5.5. ДИАГРАММЫ ДИНАМИКИ

Для изображения и внесения суждений о развитии явления во времени строятся диаграммы динамики.

Для наглядного изображения явлений в рядах динамики ис­пользуются диаграммы: столбиковые, ленточные, квадратные, круговые, линейные, радиальные и др. Выбор вида диаграммы зависит в основном от особенностей исходных данных, цели ис­следования. Например, если имеется ряд динамики с несколь­кими неравноотстоящими уровнями во времени (1913, 1940, 1950, 1980, 1985, 1997 гг.), то часто для наглядности используют стол­биковые, квадратные или круговые диаграммы. Они зрительно впечатляют, хорошо запоминаются, но не годны для изображе­ния большого числа уровней, так как громоздки. Когда число уров­ней в ряду динамики велико, целесообразно применять линей­ные диаграммы, которые воспроизводят непрерывность процес­са развития в виде непрерывной ломаной линии. Кроме того, линейные диаграммы удобно использовать: если целью иссле­дования является изображение общей тенденции и характера развития явления; когда на одном графике необходимо изобра­зить несколько динамических рядов с целью их сравнения; если наиболее существенным является сопоставление темпов роста, а не уровней.

Для построения линейных графиков применяют систему пря­моугольных координат. Обычно по оси абсцисс откладывается время (годы, месяцы и т. д. ), а по оси ординат - размеры изоб­ражаемых явлений или процессов. На оси ординат наносят мас­штабы. Особое внимание следует обратить на их выбор, так как от этого зависит общий вид графика. Обеспечение равновесия, пропорциональности между осями координат необходимо в гра­фике в связи с тем, что нарушение равновесия между осями ко­ординат дает неправильное изображение развития явления;

Если масштаб для шкалы на оси абсцисс очень растянут по сравнению с масштабом на оси ординат, то колебания в дина­мике явлений мало выделяются, и наоборот, преувеличение масштаба по оси ординат по сравнению с масштабом на оси абсцисс дает резкие колебания. Равным периодам времени и размерам уровня должны соответствовать равные отрезки мас­штабной шкалы.

В статистической практике чаще всего применяются графичес­кие изображения с равномерными шкалами. По оси абсцисс они берутся пропорционально числу периодов времени, а по оси ор­динат - пропорционально самим уровням. Масштабом равномер­ной шкалы будет длина отрезка, принятого за единицу.

рассмотрим построение линейной диаграммы на основании следующих данных (табл. 5.7).

Таблица 5.7

Динамика валового сбора зерновых культур в регионе за 1985-1994 гг.

Год

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

Млн.т

237,4

179,2

189,1

158,2

186,8

192,2

172,6

191,7

210,1

211,3

Изображение динамики валового сбора зерновых культур на координатной сетке с неразрывной шкалой значений, начинающих­ся от нуля, вряд ли целесообразно, так как 2/3 поля диаграммы остаются неиспользованными и ничего не дают для выразитель­ности изображения. Поэтому в данных условиях рекомендуется строить шкалу без вертикального нуля, т. е. шкала значений раз­рывается недалеко от нулевой линии и на диаграмму попадает лишь часть всего возможного поля графика. Это не приводит к искажениям в изображении динамики явления, и процесс его из­менения рисуется диаграммой более четко (рис. 5.18).

Рис. 5.18. Динамика валового сбора зерновых культур в регионе за 1985-1994 гг.

Нередко на одном линейном графике приводится несколько кри­вых, которые дают сравнительную характеристику динамики раз­личных показателей или одного и того же показателя.

Примером графического изображения сразу нескольких показа­телей является рис. 5.19.

141

Рис. 5.19. Динамика производства чугуна и готового проката в регионе за 1985-1994 гг.

Однако на одном графике не следует помещать более трех-че­тырех кривых, так как большое их количество неизбежно ослож­няет чертеж и линейная диаграмма теряет наглядность.

В некоторых случаях нанесения на один график двух кривых дает возможность одновременно изобразить динамику третьего по­казателя, если он является разностью первых двух. Например, при изображении динамики рождаемости и смертности площадь меж­ду двумя кривыми показывает величину естественного прироста или естественной убыли населения.

Иногда необходимо сравнить на графике динамику двух пока­зателей, имеющих различные единицы измерения. В таких случа­ях понадобится не одна, а две масштабные шкалы. Одну из них размещают справа, другую - слева.

Однако такое сравнение кривых не дает достаточно полной кар­тины динамики этих показателей, так как масштабы произвольны. Поэтому сравнение динамики уровня двух разнородных показате­лей следует осуществлять на основе использования одного мас­штаба после преобразования абсолютных величин в относитель­ные. Примером такой линейной диаграммы является рис. 5.20.

Линейные диаграммы с равномерной шкалой имеют один не­достаток, снижающий их познавательную ценность: равномерная шкала позволяет измерять и сравнивать только отраженные на диаграмме абсолютные приросты или уменьшения показателей на протяжении исследуемого периода. Однако при изучении динами­ки важно знать относительные изменения исследуемых показате­лей по сравнению с достигнутым уровнем или темпы их измене-

Рис. 5.20. Доли вкладов граждан в Сбербанк и коммерческие банки в одном из городов в 1995 г. (%)

ния. Именно относительные изменения экономических показате­лей в динамике искажаются при их изображении на координатной диаграмме с равномерной вертикальной шкалой. Кроме того, в обычных координатах теряет всякую наглядность и даже становит­ся невозможным изображение для рядов динамики с резко изме­няющимися уровнями, которые обычно имеют место в динамичес­ких рядах за длительный период времени.

В этих случаях следует отказаться от равномерной шкалы и по­ложить в основу графика полулогарифмическую систему. Основ­ная идея полулогарифмической системы состоит в том, что в ней равным линейным отрезкам соответствуют равные значения ло­гарифмов чисел. Такой подход имеет преимущество: возможность уменьшения размеров больших чисел через их логарифмические эквиваленты. Однако с масштабной шкалой в виде логарифмов график малодоступен для понимания. Необходимо рядом с лога­рифмами, обозначенными на масштабной шкале, проставить сами числа, характеризующие уровни изображаемого ряда динамики, которые соответствуют указанным числам логарифмов. Такого рода графики носят название графиков на полулогарифмической сетке.

Полулогарифмической сеткой называется сетка, в которой на одной оси нанесен линейный масштаб, а на другой - логарифми­ческий. В данном случае логарифмический масштаб наносится на ось ординат, а на оси абсцисс располагают равномерную шкалу для отсчета времени по принятым интервалам (годам, кварталам, месяцам, дням и пр.).

Техника построения логарифмической шкалы следующая (рис. 5.21).

Рис. 5.21. Схема логарифмического масштаба

Необходимо найти логарифмы исходных чисел, начертить ор­динату и разделить ее на несколько равных частей. Затем нанес­ти на ординату (или равную ей параллельную линию) отрезки, про­порциональные абсолютным приростам этих логарифмов. Далее записать соответствующие логарифмы чисел и их антилогариф­мы, например (0,000; 0,3010; 0,4771; 0,6021; ...; 1,000, что дает 1, 2, 3, 4, ..., 10). Полученные антилогарифмы окончательно дают вид искомой шкалы на ординате.