Используем формулу 3 для расчёта агрегатного индекса физического объёма реализации товаров по данным табл.1:
числитель индексного отношения
= 9 500 * 20 + 2 500 * 30 + 1 500 * 15 = 287 500 руб.
знаменатель индексного отношения
= 7 500 * 20 + 2 000 * 30 + 1 000 * 15 = 225 000 руб.
Полученные значения подставляем в формулу 3:
= или 127,8%
Применение формулы 3 показывает, что по данному ассортименту товаров в целом прирост физического объёма реализации в текущем периоде составил в среднем 27,8%.
Агрегатный индекс физического объёма товарооборота может определяться посредством использования в качестве соизмерителя индексируемых величин и цен текущего периода .
Агрегатная формула общего индекса будет иметь вид:
= (4)
числитель индексного отношения
= 9 500 * 25 + 2 500 * 30 + 1 500 * 10 = 327 500 руб.
знаменатель индексного отношения
= 7 500 * 25 + 2 000 * 30 + 1 000 * 10 = 257 500 руб.
Полученные значения подставляем в формулу 4:
= или 127,2%
Применение формулы 4 показывает, что по данному ассортименту товаров в целом прирост физического объёма реализации в текущем периоде составил в среднем 27,2%.
Аналогичным образом производится расчёт индекса себестоимости, при этом сравниваются суммы затрат в производстве в отчётном периоде (— числитель индекса) с суммой затрат в производстве на продукцию отчётного периода по себестоимости базисного периода (— знаменатель).
Индексы с постоянными и переменными весами.
При изучении динамики коммерческой деятельности приходится производить индексные сопоставления более чем за два периода.
Поэтому индексные величины могут определяться как на постоянной, так и на переменной базах сравнения. При этом, если задача анализа состоит в получении характеристик изменения изучаемого явления во всех последующих периодах по сравнению с начальным, то вычисляются базисные индексы. Например, сопоставление объёма розничного товарооборота II, III и IV кварталов с I кварталом.
Но если требуется охарактеризовать последовательно изменения изучаемого явления из периода в период, то вычисляются цепные индексы. Например, при изучении объёма розничного товарооборота по кварталам года сопоставляют товарооборот II квартала c I, III — cо II и IV — с III кварталом.
В зависимости от задачи исследования и характера исходной информации базисные и цепные индексы исчисляются как индивидуальные, так и общие.
Способы расчёта индивидуальных базисных и цепных индексов аналогичны расчёту относительных величин динамики. Общие индексы в зависимости от их вида вычисляются с переменными и постоянными весами — соизмерителями.
Используя индексный ряд за несколько периодов, можно получить динамику стоимости продукции и динамику товарооборота в неизменных ценах, т.е. в ценах какого - то одного прошлого периода. Такие индексные ряды называются индексами с постоянными весами. Для них действует правило: произведение цепных индексов даёт индекс базисный.
Средние индексы.
Всякий агрегатный индекс может быть преобразован в средний арифметический из индивидуальных индексов. Для этого индексируемая величина отчётного периода, стоящая в числителе агрегатного индекса, заменяется произведением индивидуального индекса на индексируемую величину базисного периода.
Так, индивидуальный индекс цен равен , откуда .
Следовательно, преобразование агрегатного индекса цен в средний арифметический имеет вид:
==
Аналогично индекс себестоимости равен , откуда , следовательно, ==,
Аналогично индекс физического объёма продукции (товарооборота) равен , откуда , следовательно, ==
Расчеты недостающих индексов с помощью индексных систем.
Многие экономические индексы тесно связаны между собой и образуют индексные системы. Так, индекс цен связан с индексом физического объема товарооборота или физического объема продукции, образуя следующую индексную систему:
или
Произведение индекса цен на индекс физического объема товарооборота или продукции дает индекс физического объема товарооборота в фактических ценах, или индекс стоимости продукции.
Индекс себестоимости промышленной продукции связан с индексом физического объема продукции по себестоимости, образуя следующую индексную систему:
или
Произведение индекса себестоимости продукции на индекс физического объема дает индекс затрат в производстве.
Используя индексы системы, можно по двум известным индексам найти третий, неизвестный.
Тема 9: Статистические методы изучения взаимосвязи социально- экономических явлений
9.1 Стохастико- детерминированный характер социально-экономических явлений и связи между ними.
9.2 Статистические методы моделирования связи
9.3 Непараметрические методы
Изучение статистической связи.
Изучение взаимосвязей на рынке товаров и услуг — важнейшая функция работников коммерческих служб: менеджеров, коммерсантов, экономистов. Особую актуальность это приобретает в условиях развивающейся рыночной экономики. Изучение механизма рыночных связей, взаимодействия спроса и предложения, влияние объема и состава предложения товаров на объем и структуру товарооборота, формирование товарных запасов, издержек обращения, прибыли и других качественных показателей имеет первостепенное значение для прогнозирования конъюнктуры рынка, рациональной организации торговых процессов и решения многих вопросов успешного ведения бизнеса.
Статистика призвана изучать коммерческую деятельность с количественной стороны. Это осуществляется с помощью соответствующих приемов и методов статистики и математики.
Статистические показатели коммерческой деятельности могут состоять между собой в следующих основных видах связи: балансовой, компонентной, факторной и др.
Балансовая связь — характеризует зависимость между источниками формирования ресурсов (средств) и их использованием.
— остаток товаров на начало отчетного периода; — поступление товаров за период; — выбытие товаров в изучаемом периоде; — остаток товаров на конец отчетного периода.Левая часть формулы характеризует предложение товаров
, а правая часть — использование товарных ресурсов .Компонентные связи показателей коммерческой деятельности характеризуются тем, что изменение статистического показателя определяется изменением компонентов, входящих в этот показатель, как множители:
В статистике коммерческой деятельности компонентные связи используются в индексном методе. Например, индекс товарооборота в фактических ценах
представляет произведение двух компонентов — индекса товарооборота в сопоставимых ценах и индекса цен , т.е. .Важное значение компонентной связи состоит в том, что она позволяет определять величину одного из неизвестных компонентов:
илиФакторные связи характеризуются тем, что они проявляются в согласованной вариации изучаемых показателей. При этом одни показатели выступают как факторные, а другие — как результативные.
Факторные связи могут рассматриваться как функциональные и корреляционные.
При функциональной связи изменение результативного признака
всецело зависит от изменения факторного признака :При корреляционной связи изменение результативного признака
не всецело зависит от факторного признака , а лишь частично, так как возможно влияние прочих факторов : .Примером корреляционной связи показателей коммерческой деятельности является зависимость сумм издержек обращения от объема товарооборота. В этой связи, помимо факторного признака — объема товарооборота
, на результативный признак (сумму издержек обращения ) влияют и другие факторы, в том числе и не учтенные . Поэтому корреляционные связи не являются полными (тесными) зависимостями.