Основной формой общего индекса является агрегатная:
Ip=
, гдер – индексируемая величина, то есть так как называется индекс (изменяющаяся);
q – соизмеритель.
Различают качественные и количественные формы агрегатных индексов. Количественные можно складывать, а качественные – нет.
Среди агрегатных индексов качественных показателей различают:
– агрегатный индекс цен – Ур =
;– агрегатный индекс себестоимости продукции – Уz =
;– агрегатный индекс производительности труда – Уt=
.Наиболее типичным общим индексом количественных показателей является индекс физического объема, который записывается в виде формулы: Уq=
.В экономико-статистическом анализе приходится сравнивать в динамике такие обобщающие показатели качественных характеристик, как средняя цена, средняя себестоимость, средняя производительность труда и другие. Так как на динамику средней влияют не только изменения осредняемого признака, но и изменения состава рассматриваемой совокупности, влияние каждого из этих факторов оценивается посредством общих индексов средних величин. Такие индексы образуют индексную систему, это:
· Средний арифметический индекс получается из агрегатного, если заменить значение индексируемой величины второго из сравниваемых периодов.
Iq =
; Iq = ; q1 = iq q0; Iq = .· Средний гармонический индекс представляет собой среднюю гармоническую из индивидуальных индексов. Индексируемая величина знаменателя заменяется через индивидуальный индекс и индексируемую величину другого периода.
Ip =
, iq= ; P0 = ; Ip = .Различают индексы постоянного и переменного состава.
К индексам постоянного относятся те, у которых соизмеритель и в числителе и в знаменателе одинаковый:
Iq =
, Ip = , Iz = .Относительные величины, характеризующие динамику двух средних показателей для однородной совокупности, в статистике называют индексом переменного состава.
Jp=
.Рассмотрим следующие данные об оказании платных услуг образования в таблице 10.
Таблица 10. Рынок платных услуг в системе образования Рязанской области
Вид услуги | Ед. измерения | Средние потребительские цены (руб.) | Объем оказанных услуг(единиц) | P0q0 | P1q1 | P0q1 | ||
2005 | 2008 | 2005 | 2008 | |||||
Детские ясли-сад | 1 день посещения | 10,15 | 21,34 | 10617800 | 8987100 | 107770670 | 191784714 | 91219065 |
Занятия на курсах иностранных языков | 1 академический час | 39,17 | 58,87 | 482100 | 634150 | 18883857 | 37332410,5 | 24839655,5 |
Обучение в государственных вузах | 1 семестр | 8331,25 | 15009,42 | 3279 | 6851 | 27318168,75 | 102829536,4 | 102829536,4 |
х | х | х | Х | 153972695,8 | 331946660,9 | 218888256,9 |
Исходя из полученных данных можно сделать вывод:
Ipq =
или 215,6%Ip =
или 151,7%Iq =
или 142,1%Общий объем платных услуг образовательных учреждений Рязанской области увеличился за период с 2005 по 2008 год на 115,6%. В абсолютном выражении это составило:
Данное увеличение образовалось за счет роста цен на виды образовательных услуг на 51,7% или на 113058404 рубля (331946660,9–218888256,9), за счет увеличения объема оказанных услуг образовательными учреждениями области на 42,1% или на 64915561,1 рублей (218888256,9–153972695,8).
Проверим взаимосвязь индексов: Ipq= Ip* Iq = 1.517*1.421 = 2.156.
5. Корреляционно-регрессионный анализ
образование анализ корреляционный динамика
Все социально-экономические явления взаимосвязаны, взаимообусловлены, и связь между ними носит причинно-следственный характер. Суть причинной связи заключается в том, что при необходимых условиях одно явление предопределяет другое и в результате такого взаимодействия возникает следствие.
Взаимосвязанные признаки подразделяются на факторные (под их воздействием изменяются другие, зависящие от них признаки) и результативные.
Связи по степени тесноты могут быть функциональными (при которых определенному значению факторного признака соответствует строго определенное значение результативного), статистическими (когда одному и тому же значению факторного признака могут соответствовать несколько значений результативного признака). Функциональные связи иначе называют полными, а статистические – неполными или корреляционными.
Корреляция – это статистическая зависимость между случайными величинами, не имеющими строго функционального характера, при которой изменение одной из случайных величин приводит к изменению математического ожидания другой.
По направлению различают прямую и обратную связь.
Если с увеличением аргумента (х) функция (у) также увеличивается без всяких единичных исключений, то такая связь называется полной прямой связью.
Если с увеличением аргумента (х) функция (у) уменьшается без всяких единичных исключений, то такая связь называется полной обратной.
По аналитическому выражению выделяют связи прямолинейные и нелинейные. Если статистическая связь между явлениями может быть приближенно выражена уравнением прямой линии, то ее называют линейной связью; если же она выражается уравнением какой-либо кривой линии (параболы, гиперболы, степенной, показательной и т.д.), то такую связь называют нелинейной или криволинейной.
Корреляционный метод изучения связей заключается в нахождении уравнения связи, в котором результативный признак зависит только от интересующего нас фактора (или нескольких факторов в случае множественной связи), а все прочие факторы, также влияющие на результативный признак, принимаются за постоянные и средние.
В корреляционно – регрессионном анализе уравнение прямой (равно и любой кривой) называется уравнением связи или регрессии, а сама прямая – линией регрессии. Уравнение парной линейной регрессии имеет вид:
х = а0 + а1 х, где:х – факторный признак; а0 и а1 – параметры уравнения.
В математическом смысле параметр а0является отрезком ординаты при х = 0, а параметр а1 – тангенсом угла наклона прямой. Экономический же смысл следующий: а0 характеризует значение результативного признака независимо от взятого факторного; а1показывает, насколько в среднем изменится признак у при изменении признака х на одну единицу, а1называют коэффициентом регрессии. На его основе рассчитывают коэффициент эластичности: Эх = а1(
). Он показывает, на сколько процентов в среднем изменится величина функции (у) при изменении факторного признака (х) на 1% относительно своей средней. Параметры находятся из системы двух нормальных уравнений для парной линейной регрессии, полученных на основе выравнивания по способу наименьших квадратов.а0n + a1∑x = ∑y
а0∑x + a1∑x2 = ∑yx.
Решая эту систему, находим параметры:
a1 =
; а0 = - a1 .Чтобы измерить тесноту прямолинейной связи между двумя признаками, пользуются парным коэффициентом корреляции, (r) – коэффициент корреляции может принимать значения в пределах -1
r +1. Если связь прямая, то коэффициент корреляции имеет знак плюс, если связь обратная, то rимеет знак минус.В рядах динамики коэффициент корреляции определяется по формуле:
r =