Смекни!
smekni.com

Статистический анализ образования (стр. 4 из 7)

В статистическом анализе вариации имеет большое значение дисперсия (s2). Однако ее применение как мера вариации в ряде случаев бывает не совсем удобным, потому что размерность дисперсии равна квадрату размерности изучаемого признака. В таких случаях для измерения вариации признака вычисляют среднеквадратическое отклонение.

Дисперсия и среднеквадратическое отклонение недостаточно полно характеризуют колеблемость признака, так как показывают абсолютный размер отклонений, что затрудняет сравнение изменчивости различных признаков.

Для характеристики колеблемости явлений среднеквадратическое отклонение сопоставляют с его средней величиной и выражают в процентах. такой показатель называют коэффициентом вариации и рассчитывают по формуле:

.

По величине коэффициента вариации можно судить о степени вариации признаков совокупности. Чем больше его величина, тем больше разброс значений вокруг средней, тем менее однородна совокупность по своему составу и тем менее представительна средняя.

Вычислим показатели вариации, для чего используем данные табл. 5.

Таблица 5. Расчетные значения показателей вариации

X f (x –
), x=27
(x –
)2
(x –
)2f
10 5 -17 289 1445
20 9 -7 49 441
30 8 3 9 72
40 5 13 169 845
50 2 23 529 1058
150 29 x x 3861

s2 =

=
= 133,1

s =

= 11,5

Коэффициент вариации:

Vs =

* 100% =
* 100% = 42,7%

Среднеквадратическое отклонение показывает, что число общеобразовательных учреждений районов Рязанской области отклоняется от среднего размера на 11 единиц.

Значение коэффициента вариации свидетельствует о том, что рассмотренная совокупность количественно неоднородная, так как Vs>33%.

3. Динамика показателей сферы образования в Рязанской области

Процессы и явления общественной жизни, являющиеся предметом изучения статистики, находятся в постоянном движении и изменении.

Ряд цифровых данных в определенной, хронологической последовательности, характеризующие изменения явлений во времени, называются динамическими рядами. Такие ряды строят для выявления и изучения складывающихся закономерностей в развитии явлений экономической, политической и культурной жизни общества.

Правильно построенный динамический ряд состоит из сопоставимых статистических показателей. Для этого необходимо, чтобы состав изучаемой совокупности был один и тот же на всем протяжении ряда, то есть относился к одной и той же территории, к одному и тому же кругу объектов и был рассчитан по одной и той же методологии. Кроме того, данные динамического ряда должны быть выражены в одних и тех же единицах измерения, а промежутки времени между значениями ряда должны быть по возможности одинаковыми.

В зависимости от характера изучаемых величин различают три вида динамических рядов: моментные, интервальные и ряды средних.

Моментными рядаминазываются статистические ряды, характеризующие размеры изучаемого явления на определенную дату, момент времени.

Интервальными рядаминазываются статистические ряды, характеризующие размеры изучаемого явления за определенные промежутки времени.

Для общей характеристики какого-либо явления за определенный период рассчитывают средний уровень всех членов динамического ряда. Способы его расчета зависят от вида динамического ряда. Для интервальных рядов средняя рассчитывается по формуле средней арифметической, причем при равных интервалах применяется средняя арифметическая простая, а при неравных – средняя арифметическая взвешенная.

Для нахождения средних значений моментного ряда применяют среднюю хронологическую:

= Ѕy1 + y2 + y3 + ….‚Ѕyn

n-1

Динамические ряды анализируются при помощи таких показателей, как уровень ряда, средний уровень, абсолютный прирост, темп роста, темп прироста, абсолютное значение одного процента прироста.

Уровнем ряда называется абсолютная величина каждого члена динамического ряда. Различают начальный, конечный и средний уровни ряда.

Абсолютный прирост (Dy) характеризует размерувеличения или уменьшения изучаемого явления за определенный период времени. Он определяется как разность между двумя сравниваемыми уровнями ряда по формуле: Dy = Yi- Yi – 1, или Dy = Yi– Y0, где

Yi– текущий уровень ряда;

Yi – 1 – предыдущий уровень ряда;

Y0 – уровень базисного года. [4, стр. 18]

Если каждый уровень ряда сравнивается с предыдущим, то получают цепные показатели динамики. Если же уровни ряда сравниваются с одним и тем же первоначальным уровнем, то полученные показатели называются базисными.

Темп роста р) – отношение данного уровня явления к предыдущему или начальному, выраженное в процентах. Темпы роста, вычисленные как отношение данного уровня к предыдущему, называются цепными, а к начальному – базисными и вычисляются по формулам:

цепной Тр = Yi__ * 100%

базисный Тр = Yi__ * 100%

Yi – 1Y0

Если темпы роста выражены в виде простых отношений, то есть база сравнения принимается за единицу, а не за 100%, то полученные показатели называются коэффициентами роста.

Темпом приростапр) называется отношение абсолютного прироста к предыдущему или начальному уровню, выраженное в процентах и рассчитывается по фомулам:

Тпр = D__* 100 или Тпр = D__* 100

Yi – 1Y0

Темп прироста можно рассчитать по данным о темпе роста. Для этого надо от темпа роста отнять 100 или от коэффициента роста 1 (Тпр = Тр – 100%) или (Тпр = Кр – 1), в последнем случае получим коэффициент прироста.

Абсолютное значение одного процента прироста определяется отношением абсолютного прироста к темпу прироста за этот же период:

Расчет этого показателя имеет экономический смысл только на цепной основе.

Среднегодовой абсолютный приростопределяется по цепным абсолютным приростам по формуле:

=
или
,

где N – число абсолютных приростов.

Среднегодовой темп ростар) определяется по формуле средней геометрической:

р =
или
р =
,

где К – цепные коэффициенты роста.

По данным о численности педагогических работников государственных общеобразовательных учреждений Рязанской области построим динамический ряд и проведем анализ динамики.

Таблица 6. Численность педагогических работников государственных образовательных учреждений. Их образовательный уровень, (человек)

Показатели / Годы 2004 2005 2006 2007 2008 2009
Учителя дневных общеобразовательных учреждений 15133 14461 14262 14007 13490 13003
В том числе с высшим образованием (в% к общему числу) 80 80 81 82 82 83
Преподаватель средних специальных учебных заведений 1252 1234 1288 1249 1278 1286
В том числе с высшим образованием (в% к общему числу) 95 94 87 92 94 94
Преподаватели высших учебных заведений 1810 2087 2136 2247 2245 2269
В том числе (в% к общему числу) –доктора наук 11 11 11 11 12 12
кандидаты наук 53 51 55 55 56 56
ИТОГО: 18195 17782 17686 17503 17013 16558

Таблица 7. Показатели динамики численности педагогических работников Рязанской области

Годы Символы Число педагогических работников (человек) Абсолютный прирост Темп роста Темп прироста Значение в% прироста
цепной базисный цепной базисныйый цепной базисныйый
2004 У0 18195 - - - - - - -
2005 У1 17782 -413 -413 97,7 97,7 -2,3 -2,3 179,6
2006 У2 17686 -96 -509 99,5 97,2 -0,5 -2,8 192,0
2007 У3 17503 -183 -692 99,0 96,2 -1,0 -3,8 183,0
2008 У4 17013 -490 -1182 97,2 93,5 -2,8 -6,5 175,0
2009 У5 16558 -455 -1637 97,3 91,0 -2,7 -9,0 168,5
ИТОГО: 104737 -1637 х х х х х х

В 2009 году численность педагогических работников Рязанской области сократилось на 9,0% по сравнению с 2004 годом, в абсолютном выражении это составляет 1637 человек. Каждый процент абсолютного снижения в 2009 году составил 168 человек. Таким образом многие школы Рязанской области испытывают затруднения с укомплектованием учителями – предметниками.