Смекни!
smekni.com

Получение тонкопленочных электретов на основе фторопласта - 4 и изготовление приборов на их основе (стр. 8 из 13)

Синусоида

аповеншлвео

впрьлванг

певьрнлв

впоьвпненве

коэффициент зависящий только от диэлектрической проницаемости электрета, его размеров (L,S) и зазора I0; - круговая частота колебаний электрода; dI- амплитуда колебаний верхнего электрода относительно среднего положения; R- сопротивление цепи.

Компенсирующее напряжение внешнему полю электрета, подается от внешнего источника УИП-2. В момент компенсации напряжения на экране осциллографа наблюдаются линии развертки рисунок 6. Зная величину компенсирующего напряжения Uк, можно рассчитать поверхностную плотность заряда пленочного электрета, по формуле:

s=e*e0*U/L (2.4)

Знак электрета определяется по полярности компенсирующего напряжения.

Высокая точность измерения зарядов с помощью приведенной установки достигается использованием в качестве чувствительного нуль индикатора – осциллографа С1-65 А и для отсчета компенсирующего напряжения цифрового электронного вольтметра В7-21 А.

3.6.Исследование влияния режимов электретирования на характеристики электретов.

При получении электретов из пленок фторопласта – 4, как показали измерения, возникает гомозаряд, отрицательный по своему знаку на измеряемой стороне. При зажигании заряда в рабочем объеме электроны более подвижны, чем отрицательные ионы , осаждаются на поверхности получаемого образца. При подаче на электрод положительного импульса в диэлектрической пленке создается сильное диэлектрическое поле, под действием которого электроны инжектируются в тонкий приповерхностный слой и закрепляются на ловушках. В течении отрицательного полу периода адсорбированные на поверхности и слабо закрепленные носители выбрасываются обратно в плазму. Таким образом создаются условия для дальнейшего захвата зарядов глубокими ловушками и формирования стабильного гомозаряда. Следовательно, величина начальной и установившейся плотности поверхностных зарядов пленочных электретов определяется параметрами режима электретирования.

Основными параметрами являются:

Р – рабочее давление;

Iр – разрядный ток;

Ер - напряжение электрического поля в образце;

tэ – время электретирования.

В разработаной конструкции ячейки для электретирования в плазме разрядник служит для создания высокоионизированной газовой среды, используемой в качестве инжектирующего электрода. Равномерное распределение плазмы над пленочным образцом достигается при разряжении в рабочем объеме 10-1 – 10-2 мм рт. ст. Увеличение давления приводит к контрагированию разряда и, следовательно, к неравномерному распределению гомозаряда по поверхности образца.

Уменьшение давления ниже 10-2 мм рт.ст. сопровождается резким возрастанием напряжения горения разряда и уменьшением концентрации зарядов в плазме, так же возможна деструкция поверхности диэлектрической пленки. Поэтому в целях создания технологически выгодных режимов и предотвращения пробоя образцов выбрана величина разряжения в рабочей камере, получаемая обычными форвакуумными установками, то есть 10-1 – 10-2 мм рт.ст. При таких условиях исследовалось влияние параметров процесса электретирования в плазме на заряд полимерных пленок. Зависимость плотности заряда от давления показана на рисунке 9.

По каждому режиму было получено три партии по 5 образцов электретных мембран, таким образом приведенные ниже кривые представляют собой усредненные характеристики.

3.6.1.Влияние разрядного тока на плотность заряда электрета.

Расчеты показывают, что для обеспечения процесса электретирования достаточно создавать в разрядном промежутке разрядные токи Ip порядка десятков микроампер. В предложенной трехэлектродной системе нижним пределом, обеспечивающим стабильное горение разряда, является Ip=100 мкА. При уменьшении Ip ниже 100 мкА возможен спонтанный срыв разряда в рабочем объеме (из - за понижения давления, напряжения на электродах и пр.). В силу этих условий при проведении экспериментов удалось получить небольшой участок кривой предшествующий насыщению.

Из рис. 3.5 видно, что при увеличении разрядного тока от 0.5 до 3 мА s растет ( более низкое значение Ip получить не удалось, так как возможен спонтанный срыв разряда в рабочем объеме, из-за понижения напряжения на электродах, давления и так далее ).

Увеличение поверхностной плотности заряда при увеличении тока подтверждает принятую теорию о образовании заряда электрета.

Влияние разрядного тока Iр мА на плотность заряда электрета s*105 Кл*м2.


Рисунок 3.5.

3.6.2.Влияние напряженность электрического поля на плотность заряда электрета.

Зависимости поверхностной плотности заряда в пленке фторопласта - 4 толщиной 10 мкм от напряжения и влияние напряженности импульсного поля в образце на величину и стабильность заряда приведены на рис. 3.56. Амплитуда импульсов, подаваемых на рабочий электрод изменялась в широких пределах от 400 В до значений, соответствующим предпробивным полям в пленке. Электрическая схема импульсного усилителя, кроме того позволяет изменять полярность импульсов относительно потенциала плазмы. Следует заметить, что повторяемость результатов при поляризации в плазме гораздо лучше, чем при использовании других методов, и ограничена только идентичностью параметров образцов.

В отсутствии электрического поля в пленке измеренная величина заряда соответствует энергии хаотического движения электронов в плазме ( пристеночный потенциал ) и составляет примерно 3×10-5 Кл×м-2. Из рис. 3.6 видно, что при увеличение амплитуды импульсов положительной полярности до 1000 В приводит к увеличению значений начального и стабильного заряда, причем его максимальная величина соответствует напряжению примерно 1000 В. Дальнейший рост напряжения вызывает спад начального и в особенности стабильного (Рис. 3.6) заряда за счет увеличения сквозных токов и разрушения поверхности образца ( пробой ).

Влияние напряженноси Е*107 В/м на плотность заряда электрета s*105 Кл/м-2.


Рисунок 3.6.

3.6.3.Влияние продолжительности процесса электретирования на плотность заряда электрета.

Влияние времени электретирования исследовалось в интервале от 1 мин до 20 мин, график зависимости представлен на рис. 3.7. Из графика видно, что максимальное значение начального заряда наблюдается при tэ= 1 мин.

При изменении времени выдержки с 1 мин до 5 мин, как видно из графика , заряд электретной мембраны растет и достигает насыщения при t=5 мин. Превышение указанного времени электретирования вызывает спад заряда. Такой характер зависимости объясняется сильным разогревом пленки под действием плазмы, что приводит к значительным структурным изменениям. Визуальный осмотр показывает, что изменение цвета пленки при длительности выдержки превышающей 5 мин , а при tэ более 20 мин наступает полное разрушение образца.

Влияние времени электретирования Т мин. на плотность заряда электрета s*105 Кл*м2.


Рисунок 3.7.

3.6.4.Влияние повторного электретирования на плотность заряда электрета.

Для выяснения возможности возникновения ловушек при обработке мембран в плазме газового разряда был произведен опыт по повторному электретированию. На рис. 3.8 приводятся зависимости

для нескольких повторов электретирования.

Значительное увеличение плотности поверхностного заряда наблюдалось при двукратном и трехкратном электретировании образца. При дальнейших обработках плотность поверхностного заряда электрета практически не менялась. Также из рис. 3.8 видно, что прирост плотности поверхностного заряда снижается с увеличением времени электретирования и практически отсутствует при повторных обработках в течение 5 минут.

Отжиг после электретирования приводит к определенному уменьшению заряда электрета, который становится более стабильным по сравнению с зарядом в неотожженнном образце. Путем повторений операций электретирования и отжига удается превысить первоначальную плотность заряда и повысить его стабильность. Влияние подогрева образцов как в процессе электретирования, так и после него сводится к повторному захвату носителей более глубоко расположенными уровнями.

Влияние повторного электретирования на плотность заряда электрета.

Рисунок 3.8.

-электретировали в течении 5 минут, - электретировали в течении 3 минут, - электретировали в течении 1 минуты.

3.6.5.Влияния деформации пленки ПТФЭ на плотность заряда электрета.

Было проведено исследование влияния деформации пленки ПТФЭ на величину заряда. Для этого заряженные мембраны закреплялись на специальном электроде в установке для измерения заряда. И с помощью подачи электрического переменного сигнала заставили мембрану совершать механические колебания представленные на рис. . при увеличении времени колебания наблюдалось уменьшение эффективной поверхностной плотности заряда. Измерение заряда производилость бесконтактным методом.

Уменьшение заряда электрета можно объяснить тем, что при больших механических деформациях пленки происходит изменение поверхностной ориентации диполей, и уменьшение поля диполей. Поэтому часть электронов может освобождаться из ловушек, релаксируя тем самым уменьшая заряд электрета рис. 3.9 и 3.10.