Смекни!
smekni.com

Логические элементы (стр. 4 из 4)

Она может быть разбита на три части: входной диодно-резисторный ограничитель напряжения; собственно ключ на КМОП-транзнсторах; выходная диодная цепь.

Входное сопротивление транзисторов, используемых в схеме ключа, достигает значений до 1012 Ом. При толщине изоляции между затвором и полупроводником порядка 50 ... 70 мкм его собственное пробивное напряжение составляет порядка 150 ...200В. Это предполагает введение в элемент специальной схемы защиты от статического электричества, которое может попасть на его вход в процессе хранения или монтажа. Роль этой схемы выполняет входной диодно-резистивный ограничитель на элементах VD1,VD2, VD3 и R1. Данная схема ограничивает напряжение на входе тран­зисторного ключа в диапазоне от —0,7 В до На +0,7 В.

Элементы выходной диодной цени (VD4, VD5, VD6) образованы соответствующими областями самого транзисторного ключа и с точки зрения его работы не являются обязательными. Наличие этих диодов накладывает дополнительные ограничения на использование элемента. Всегда должно выполняться неравенство

│Uвх - Uвых │< Uп

В противном случае диоды входного ограничителя и выходной цепи могут открываться, закорачивая цепь питания элемента. По­следнее может быть причиной его пробоя. Поэтому напряжение питания на КМОП-схсмы должно всегда подаваться до включения и сниматься после отключения входного информационного сиг­нала.

Схемотехнически БЛЭ КМОП-типа повторяют схемы элемен­тов nМОП- и рМОП-типов. Отличие состоит в том, что всегда используются пары транзисторов. При этом если для реализации заданной логической функции транзисторы с каналом л-типа включаются последовательно, то парные им транзисторы р-типа включаются параллельно и наоборот. В качестве примера, в соответствии с рисунком 10, приведены принципиальные электрические схемы, реали­зующие логические операции 2И—НЕ и 2ИЛИ—НЕ. Для упро­щения на приведенных схемах не показаны элементы входных и выходных цепей ключа.

К особенностям схем БЛЭ следует также отнести отсутствие дополнительного нагрузочного транзистора. Его роль выполняет один из транзисторов ключа.

Анализ схем позволяет сделать важный практический вывод о том, что аналогично БЛЭ ТТЛ для БЛЭ КЛЮП параллельное включение нескольких их выходов запрещено.

В соответствии с таблицей 1, приведены наиболее важные параметры БЛЭ кмоп.

Следует также отметить, что КМОП-элементы обладают высо­кой помехоустойчивостью до 40% напряжения питания.

Таблица 1

U1вых min

В

U0вых miх

В

tзр ср

нс

Fmax

мГц

Iпотр

мкА

Uп

В

Краз

Свх

пФ

8

0,3

30 (Сн = 15 пФ)

100 (Сн = 100 пФ)

БЛЭ Интегрально-инжекционной логики

Для повышения технологичности изготовления желательно при разработке ИС применять схемотехнические решения, использую­щие только однотипные элементы, например транзисторы. Этот путь, как было показано ранее, реализован в ИС МДП, что наряду с другими достоинствами является причиной их широкого распро­странения. Однако, как уже отмечалось, ключ на биполярных транзисторах на сегодняшний день обладает лучшими как ключе­выми, так и частотными свойствами. Это является предпосылкой к постоянному поиску новых схемотехнических решений для реа­лизации биполярных ИС. Такой поиск привел к почти одновремен­ной разработке фирмами Philips и IBM элемента интегральной инжекционной логики (И2Л). Срез топологии и соответствующая ему принципиальная электрическая схема БЛЭ И2Л приведены в соответствии с рисунком 11, а, б.

Особенностью элементов И2Л является:

1. Отсутствие резисторов, что резко упрощает технологию про­изводства МС;

2. Использование токового принципа питания, при котором в ИС задается не напряжение, а ток, который непосредственно ин­жектируется в область полупроводника, образующего структуру одного из транзисторов;

3. Пространственное совмещение в кристалле полупроводника областей, функционально принадлежащих различным транзисто­рам. При этом структура располагается как по горизонтали (планарно), так и по вертикали. Такое решение позволяет отказаться от применения специальных решений для отделения областей, при­надлежащих различным элементам, как это необходимо делать в элементах ТТЛ и ЭСЛ.

4. Малое значение логического перепада, что позволяет максимально увеличить быстродействие элемента.

В приведенной схеме, в соответствии с рисунком 11, б, многоколлекторный тран­зистор VT2 выполняет функцию инвертирования входного сигнала, а транзистор VT1 — генератора (инжектора) базового тока тран­зистора VT2. К особенностям элемента следует отнести и постоян­ство тока инжектора во всех режимах работы элемента. Ток ин­жектора задается резистором R, который, как правило, выпол­няется общим на группу элементов.

В соответствии с рисунком 11,а видно, что транзистор VT1 образован планарной структурой, а многоколлекторный транзистор VT2 — верти­кальной структурой. Причем, так как площадь каждого коллек­тора транзистора VT2 меньше площади его эмиттера, этот транзи­стор, по сути, работает в инверсном режиме, что способствует уменьшению его напряжения насыщения. Все сказанное позволило разместить весь элемент И2Л на площади, занимаемой в схеме ТТЛ одним многоэмиттерным транзистором.

Важной особенностью элемента И2Л является возможность, варьируя ток инжектора в широких пределах, изменить его быстро­действие. Реально ток инжектора может изменяться от 1 нА до 1 мА, т. е. на 6 порядков. А поскольку при заданной схемотехнике энергия переключения элемента—величина непостоянная, в таких же пределах может изменяться и быстродействие элемента. Важно, что для этого не требуется никаких схемотехнических изменении в элементе.

Принцип действия схемы И2Л заключается в следующем. До­пустим, внешний сигнал на входе элемента (база транзистора VT2) отсутствует, что соответствует сигналу логической 1. В этом случае ток инжектора, втекая в базу транзистора VT2, насыщает его. На его коллекторах, а следовательно, и на выходных выводах элемента присутствует напряжение низкого уровня, равное напряжению на­сыщения транзистора VT2. Реально это 0,1 В ... 0,2 13.

Если база транзистора VT2 непосредственно или через на­сыщенный транзистор подключена к общей шине, то выполняется условие Uвх < Uбэ0 и транзистор VТ2 заперт, так как ток инжек­тора замыкается на общую нишу, минуя его эмиттерный переход. В этом случае напряжение на его коллекторах определяется внеш­ними цепями. При последовательном включении нескольких инверторов это напряжение равно напряжению эмиттерного перехода последующего транзистора. Таким образом, для БЛЭ И2Л справедливы следующие соотношения:

U0 = 0.1…0.2 B U1 = 0.6…0.7 В

Из приведенных соотношении следует, что логический перепад для БЛЭ И2Л составляет 0,4 ...0.6 В.

С использованием приведенной схемы могут быть реализованы основные логические операции И—НЕ и ИЛИ—НЕ. В соответствии с рисунком 12, показана логическая схема, построенная на трех инверторах И2Л.

Особенностью элементов И2Л является возможность параллель­ного включения нескольких их выходов. Из приведенной схемы следует, что при параллельном включении нескольких выходов в общей точке относительно входных переменных реализуется логи­ческая операция ИЛИ—НЕ. Относительно же выходных сигналов элементов реализуется логическая операция И. Таким образом, если не требуется гальваническое разделение между входными и выходными сигналами, то логическая операция И выполняется без каких-либо дополнительных схемотехнических затрат простым объединением соответствующих выходов БЛЭ. После инвертирования результата выполненной операции ИЛИ—НЕ дополнитель­ным элементом относительно исходных входных переменных реа­лизуется логическая операция ИЛИ, а относительно выходных сигналов первых элементов — операция И—НЕ.

Таким образом, БЛЭ И2Л позволяет максимально унифициро­вать структуру ИС, снизив площадь ее кристалла, и либо умень­шить ее потребление, либо повысить быстродействие.

Типовое время задержки распространения БЛЭ И2Л при токе инжектора 0,1 мкА составляет 10нс. При этом энергия переклю­чения для этого элемента па несколько порядков меньше, чем для элемента ТТЛ.

Ввиду небольшой помехоустойчивости, обусловленной малым логическим перепадом, БЛЭ И2Л используются исключительно в составе БИС и СБИС и как отдельные ИС малой степени интегра­ции не выпускаются. При этом входные и выходные цепи ИС, вы­полненных по технологии И2Л, делаются совместимыми по логи­ческим уровням с сигналами ТТЛ.

Список используемой литературы

1. Гусев В. Г., Гусев Ю. Н. “Электроника” Москва 1991г

2. Игумнов Д. В., Королев Г. В., Громов И. С. “Основы микроэлектроники” Москва 1991г

3. Нефедов В. И. “Основы радиоэлектроники” Москва 2000г

4. Опадчий “Аналоговая и цифровая электроника” Москва 1999г

5. Сентурия С., Уэдлок Б. “Электронные схемы и их применения” Москва 1977г