Лавинные фотодиоды характеризуются большим темновым током, чем фотодиоды, а следовательно, и более низкой чувствительностью, даже если реализовано достаточно высокое усиление тока, позволяющее при низких уровнях сигнала превзойти тепловой шум. Кроме того процесс умножения вносит избыточный шум. Однако лавинный фотодиод имеет более высокую квантовую эффективность. Использование кремниевых или германиевых лавинных фотодиодов позволяет существенно повысить общую чувствительность широкополосных приемных устройств. При выборе лавинного фотодиода для приемной системы необходимо, помимо квантового выхода и широкополосности, учитывать специфические факторы, присущие только лавинному фотодиоду, такие, как усиление по току и связанные с ним ограничения, а также избыточные шумы. Технология изготовления лавинных фотодиодов сложна. Это обусловлено необходимостью обеспечения пространственной равномерности умножения носителей по всей светочувствительной площадке диода и минимизации утечки по краям перехода. Для уменьшения утечки используют защитные кольца. Обычно разброс в усилении из-за пространственной неравномерности умножения носителей составляет от 20 до 50% при среднем усилении 1000.
В лавинном фотодиоде усиление максимально в режиме, когда смещение на диоде приближается к пробивному напряжению. При напряжениях, больших пробивного, протекает самоподдерживающийся лавинный ток, который все менее и менее зависит от концентрации носителей, появляющихся под действием светового потока. В рабочем режиме максимальное усиление лавинных фотодиодов ограничивается либо эффектами насыщения, вызванными протекающим током, либо произведением коэффициента усиления на полосу пропускания. Эффект насыщения умножения носителей обусловлен тем, что носители, выходящие из области, в которой происходит умножение, уменьшают электрическое поле внутри перехода и создают падение напряжения на последовательном резисторе и на нагрузке диода. Ограничение же полосы пропускания объясняется перемещением вторичных электронов и дырок (образованных посредством ионизации) по области умножения в противоположных направлениях еще некоторое время после того, как первичные носители покинули переход. Избыточный шум в лавинных фотодиодах обусловлен флуктуациями процесса умножения носителей.
Простейшими лавинными фотодиодами являются кремниевые диоды с защитным кольцом и с диаметром светочувствительной площадки от 40 до 200мкм; рабочий диапазон волн - примерно от 0,4 до 0,8 мкм. Германиевые лавинные п+- р-диоды имеют рабочий диапазон волн от 0,5 до 1,5 мкм. Произведение коэффициента усиления по току на полосу пропускания для кремниевых и германиевых лавинных фотодиодов равно соответственно 100 и 60 ГГц. Следовательно, при усилении по току 100 и 60 использование в приемной системе кремниевого или германиевого лавинного фотодиода обеспечивает полосу про пускания в 1 ГГц.
В настоящее время ведутся интенсивные разработки лавинных фотодиодов на основе GaAs, InAs и InSb, обладающих высоким усилением и ничтожным избыточным шумом.
На основе соединения GaAlAsSb созданы ЛФД на диапазон длин волн 1... 1,4 мкм, превосходящие по параметрам германиевые ЛФД. Для длин волн 1... 1,7 мкм применяют соединения типа InGaAsP; значительного улучшения характеристик ЛФД ожидают при использовании гетероструктур на основе InGaAsP/InP. Кроме того, продолжаются работы по созданию интегральных схем, являющихся комбинацией ЛФД и входного усилителя на полевом транзисторе (так называемые FЕT-ЛФД), что позволяет улучшить качество фотоприемника.
n p
<G>
n,p n,p p,n p,n
Рис 2.4. Основные этапы фотоэлектрического преобразования при детектировании оптического сигнала.
Независимо от вида полупроводникового приемника основные этапы фотоэлектрического преобразования можно проиллюстрировать схемой на рис.2.4. Она включает в качестве первичного акта поглощение излучения и генерацию свободных носителей заряда, механизм внутреннего усиления, обусловленный размножением носителей, если такой предусмотрен, а также этап формирования выходного сигнала, что определяет условия согласования фотоприемника с нагрузкой, включая выходные цепи усилительных звеньев в случаях внешнего усиления сигнала. Каждому этапу соответствуют свои параметры процесса, уровень шумов, ограничивающих для фотоприемников различного типа и различных комбинаций приемников с усилителями добротность, пороговую чувствительность, надёжность. Необходимость в ряде случаев усиления сигнала после его детектирования предполагает модуляцию светового потока поступающего на вход приемника, или его фототока.
Чувствительность фотоприемника и ее спектральное распределение определяется отношением
,(2.66)
где l в мкм. В этом выражении
- фототок, сигнал на выходе фотоприемника, соответствующий
входной оптической мощности
;
n, N0 - скорости генерации фотоносителей в фотоприемнике и фотонов на его поверхности соответственно;
-заряд электрона, постоянная Планка, скорость света соответственно;
- квантовая эффективность - количественная характеристика внутреннего фотоэффекта. Зависимости
, как правило, экстремальны с максимумом при , что обусловлено спектральной зависимостью коэффициента поглощения излучения в данном материале.Для правильно сконструированных фотоприемников с антиотражающими покрытиями оптимальные значения
, что позволяет при расчетах в первом приближении принимать .Чувствительность фотоприемника определяется также средним
значением коэффициента внутреннего усиления фототока величина которого флуктуирует относительно <G>. Если внутреннее усиление является следствием лавинного размножения носителей (как в лавинных фотодиодах), то <G> определяется как средняя статистическая величина за время действия светового импульса.
Если усиление обусловлено пролётным временем носителей (как в фоторезисторах), то <G> определяется средним (объемным и поверхностным) временем жизни фотоносителей
, (2.67)
ограничивающим быстродействие фотоприёмника.
Для фотодиодов без внутреннего усиления ( p - n, p - i - n, с барьером Шотки)
(2.68)
У лавинных фотодиодов с <G> » 50-100
У быстродействующих фотоприёмников с фотопроводящим каналом на основе гетероэпитоксиальных плёнок AlGaAs/GaAs, AlInAs/GaInAs, GaInAs/InP
Минимальная детектируемая мощность
(порог чувствительности) ограничивается отношением сигнал-шум (с/ш) фотопреобразователя. Его шумовые свойства удобно характеризовать эквивалентной мощностью шума (Вт/Гц1/2), (2.69)
где
- входная оптическая мощность, при которой отношение с/ш равно 1.При правильно спроектированном фотопреобразователя электронная часть не вносит дополнительных шумов, превышающих дробовый шум приёмника и
, (2.70)
где
- шумовой ток являющийся эмпирическим параметром фотоприёмника. Для фотоприёмников без внутреннего усиления ограничивается в основном токами поверхностной утечки ( ).При <G> = 100-50 ток
и определяется типом, материалом и конструкцией фотоприёмника. Для кремниевых p - i - n фотодиодов , для лавинных , NEP являются функцией полосы пропускания системы.Для широкополосного усиления малых фототоков (
А) при низких порогах чувствительности применяются преимущественно два типа электронных усилителей: трансимпедансный и интегрирующий.