Смекни!
smekni.com

Энергетика СВЧ в народном хозяйстве: применение СВЧ-нагрева в пищевой промышленности (стр. 2 из 9)

Амплитроны имеют КПД 60% — 70%, а иногда и 80%. Однако принципиально амплитроны схожи с магнетронами и имеют в основном те же недостатки: катод находится в пространстве взаимодействия, отработанные электроны бомбардируют волноведущую систему и т.д.

Рассмотрим подробнее работу магнетрона непрерывного действия в качестве источника СВЧ энергии для промышленного применения.

Применение последовательного электромагнита. Создание магнитного поля магнетрона с помощью электромагнита, включенного последовательно в анодную цепь прибора, позволяет упростить схему питания, понизить стоимость установки, повысить устойчивость работы магнетрона при колебаниях напряжения в сети и изменениях параметров высокочастотной нагрузки (ее модуля и фазы). Кроме того, применение последовательного электромагнита открывает возможность простой регулировки выходной мощности в довольно широких пределах.

Упрощение схемы питания достигается рациональным выбором параметров электромагнита, в результате чего магнетрон может работать при непосредственном включении в последовательно соединенных анодной цепи магнетрона и обмотки электромагнита в цепь вторичной обмотки силового трансформатора по схеме двухполупериодного выпрямления. Если индуктивность электромагнита недостаточна, то для сглаживания пульсаций анодного тока дополнительно последовательно с электромагнитом может быть включен дроссель. Суммарная индуктивность должна составлять 10 — 30 Гн. Эта схема наиболее проста и удобна, когда в установке работают два магнетрона, а через обмотки электромагнита протекает слегка пульсирующий постоянный анодный ток поочередно генерирующих магнетронов (рис. 1). Переменная составляющая анодного тока может быть в достаточной степени уменьшена за счет увеличения индуктивности дросселя и электромагнитов.

Рис. 1. Схема безвыпрямительного питания магнетронов с последовательными электромагнитами от сети переменного тока промышленной частоты:

1 — магнетрон; 2 — электромагнит; 3 — высоковольтный трансформатор.

При работе двух магнетронов открываются новые возможности для улучшения использования СВЧ энергии. Так, например, если генерируемые частоты несколько отличны друг от друга, то можно получить более равномерное распределение плотности СВЧ энергии по объему, в котором происходит тот или иной технологический процесс.

Рассмотренная схема питания используется в СВЧ печах, разработанных отечественной промышленностью.

В качестве примера приведем характеристики магнетрона для промышленного применения типа M571. Его основные параметры следующие: рабочая частота 2375 ±50 МГц; выходная мощность 2,5 кВт в непрерывном режиме при Kстv < 1,1; анодное напряжение 3,6 кВт; анодный ток 1,1 A; мощность накала 300 Вт; магнитная индукция 0,135 T; Kстv нагрузки, допустимой в любой фазе, при питании от стабилизированного выпрямителя до 3,5.

Рабочими характеристиками магнетронов называют зависимости анодного напряжения Uа и выходной мощности Pвых от анодного тока Iа. Зависимость Uа=f(Iа) называют также вольт-амперной характеристикой.

Если сравнить рабочие характеристики магнетрона М571 при работе с постоянным магнитом и с последовательным электромагнитом при питании его от выпрямителя со сглаживающим фильтром, то можно отметить следующее. Применение электромагнита позволяет более плавно регулировать выходную мощность, меняя Uа, причем КПД h остается достаточно высоким (более 46%) при изменении Pвых от 2,5 (h = 60%) до 0,5 кВт (h = 46%).

Нагрузочными характеристиками магнетрона называют зависимости Iа и Pвых от модуля и фазы комплексной нагрузки. Сравнение нагрузочных характеристик при тех же условиях, при которых рассматривались рабочие характеристики, показывает, что применение последовательного электромагнита позволило существенно уменьшить изменение анодного тока и выходной мощности при изменении фазы нагрузки. А это, в свою очередь, не только улучшает использование СВЧ энергии, но и положительно сказывается на долговечности магнетрона.

Рабочая и нагрузочная характеристики при безвыпрямительном питании магнетрона с применением дросселя и последовательного электромагнита по схеме, изображенной на рис. 1, практически не отличаются от характеристик магнетрона при строго постоянном анодном напряжении.

Уменьшение пульсаций магнитного поля. Современные магнетроны имеют металлокерамическую конструкцию, причем стенки корпуса анодного блока, выполненные из меди, достигают по толщине 9 — 10 мм. Эта особенность конструкции оказалась весьма полезной для уменьшения пульсаций магнитного поля в пространстве взаимодействия за счет поверхностного эффекта на частоте 100 Гц, т.е. на частоте пульсаций в однофазных двухпериодных схемах выпрямления. Толщина поверхностного слоя для меди на частоте 100 Гц d = 6,7 мм. При этом переменная составляющая магнитного поля в пространстве взаимодействия H2 будет составлять всего лишь 0,2 переменной составляющей магнитного поля вне корпуса анодного блока H1(H2/H1=e

@ 0,2).

Поэтому если амплитуда пульсаций анодного тока 20% среднего значения, то амплитуда пульсаций напряженности магнитного поля в пространстве взаимодействия для магнетрона M571 — всего 2% — 3%. Это, в свою очередь, позволяет считать магнитное поле в пространстве взаимодействия постоянным, и требования к стабилизации источников питания для создания постоянного магнитного поля могут быть существенно снижены.

Сравнение электромагнитов и постоянных магнитов. Современные конструкции электромагнитов по размеру и массе не превышают постоянных магнитов с теми же параметрами. Электромагнит для магнетрона M571 является малогабаритным (210x130x110 мм), его масса - около 4 кг. Благодаря секционированию обмоток и наличию ребер электромагнит не требует принудительного охлаждения, так как тепловые потери обмоток невелики сами по себе. Расход энергии на питание электромагнита значительно перекрывается улучшением электронного КПД магнетрона и увеличением его СВЧ мощности. Кроме того, при использовании электромагнитов уменьшается стоимость эксплуатации установок. При замене магнетрона электромагнит остается, в то время как пакетированный магнетрон заменяется вместе с постоянным магнитом.

Резонаторные камеры для установок СВЧ нагрева диэлектриков

Конструкция резонаторных камер должна быть такой, чтобы внутри них нагрев был одинаков в любой части внутреннего объема, занятого обрабатываемым диэлектриком. С другой стороны, объем камер должен быть достаточно большим, чтобы в течение каждого цикла обрабатывать значительное количество материала и полностью использовать мощность СВЧ генератора. Как уже говорилось, для промышленного применения выделены небольшие участки спектра электромагнитных излучений, поэтому произвольно выбирать рабочую длину волны нельзя. Одним из наиболее удобных диапазонов для нагрева диэлектриков является диапазон волн вблизи 12,6 см (2375 ±50 МГц).

Исходя из приведенных требований в устройствах СВЧ нагрева находят применение резонаторные камеры в виде прямоугольных объемных резонаторов, линейные размеры которых в 5 — 6 раз превышают длину волны генератора. В подобном резонаторе может существовать несколько различных видов колебаний (более десяти), у каждого из которых свое распределение электрического и магнитного полей внутри объема резонатора. Такие резонаторы называются многомодовыми, т.е. в них может быть одновременно возбуждено несколько видов колебаний.

Поля различных видов колебаний, если они возбуждены от одного генератора с фиксированной длиной волны, могут в различных точках внутреннего объема резонатора интерферировать, т.е. складываться и вычитаться. В результате в некоторых точках могут быть более сильные поля (от сложения полей нескольких видов колебаний), а в других - более слабые (вследствие вычитания). Поэтому суммарное поле может быть существенно неравномерным.

Размеры и параметры объемных резонаторов могут быть рассчитаны на ЭВМ и оптимизированы. Задача оптимизации состоит в том, чтобы выбрать такие размеры резонатора, при которых в нем можно было бы возбуждать только определенные виды колебаний, а интерференция между ними давала бы возможно более равномерное поле по объему. При этом возбуждающие колебания устройства должны устанавливать строго определенные соотношения между амплитудами тех видов колебаний, которые дают суммарное равномерное поле.

Несколько иной способ получения равномерности нагрева — это применение двух или более генераторов, работающих на разных, но обычно близких частотах, или введение изменения во времени генерируемой длины волны в некоторых возможных пределах ±Dl.

Чем ближе по шкале длин волн расположены виды колебаний рассматриваемого многомодового резонатора, тем меньшее изменение длины волны генератора оказывается достаточным для улучшения равномерности нагрева и получения равномерного электромагнитного поля в нем даже при слабой загрузке резонатора обрабатываемым диэлектриком.

Для СВЧ нагрева наиболее пригодны такие многомодовые резонаторы, у которых резонансные длины волн различных видов колебаний расположены по шкале длин волн не сгустками, а возможно более равномерно. Это получается, когда размеры резонатора a, b и lрез соизмеримы, но не равны, т.е. когда резонатор представляет собой параллелепипед, близкий к кубу, но не куб (рис. 2).