Если
(7.)
,то входной ток компаратора можно не учитывать при расчете сопротивлений резисторов.
Для точной установки напряжения порогового уровня используется регулировочный резистор R2. Осью потенциометра можно плавно изменить величину порогового напряжения в пределах от 0,9UД1min до 1,1UД1min.
Рисунок 5.Схема делителя
Для определения тока делителя (Iд). необходимо воспользоваться формулой (3) с учетом выражения (5) :
(8.)
,(9.)
,(10.)
,(11.)
.С учетом формул (9), (10), (11) преобразуем соотношение (8) и представим в виде:
(12.)
.Из уравнения (12) определим неизвестный ток делителя Iд:
(13.)
.Ток делителя R4, R5, R6 будет определен аналогично выражению (13):
(14.)
.Подставляя в выражения (13) и (14) паспортные значения компаратора К597СА3, Uсм= 0,005 В, Iвх= 0,25мкА и исходные данные напряжений датчиков Д1, Д2, Д3, получим:
Проверяя условие
делаем вывод, что входным током компаратора можно пренебречь из-за малой величины, и пользуясь только током делителя IД рассчитаем сопротивления резисторов делителя для датчика Д1:(15.)
,(16.)
,(17.)
,(18.)
,(19.)
,(20.)
,где: R1p, R2p, R3p, R4p, R5p, R6p – расчетные сопротивления резисторов.
Далее по ГОСТ выбираем номиналы сопротивлений резисторов R1 R2, R3, R4, R5, R6 по условию:
R1£ R1p, R2£ R2p, R3£ R3p, R4£ R4p, R5£ R5p, R6£ R6p,
то есть из ряда стандартных значений выбирается равное ближайшее или меньшее значение.
С учётом гостированных номиналов резисторов рассчитаем ток делителей:
(21.)
(22.)
Далее делаем проверку возможности установки требуемого напряжения на резисторах R2 и R5:
(23.)
(24.)
С резисторами, выбранными по ГОСТ мы сможем обеспечить необходимые напряжения на входах компаратора.
По формуле 3 рассчитаем сопротивление эквивалентных резисторов:
, .Расчёт резисторов для датчиков Д2 – Д3 проводится аналогично описанному выше.
Проводя аналогичные вычисления для резистивных делителей датчиков Д2 и Д3 с тем же компаратором К597СА3 расчитаем сопротивления резисторов:R7 – R18 и R21 – R24.
R7=3900 (OM), R8=750 (OM), R9=3300 (OM), R10=2000 (OM),
R11=1300 (OM), R12=6200 (OM), R13=3600 (OM), R14=750 (OM),
R15=3300 (OM), R16=2700 (OM), R17=1000 (OM), R18=4300 (OM),
R21=2000 (OM), R22=2000 (OM), R23=2000 (OM), R24=2000 (OM),
2.4. Определение мощности и тока, потребляемых ФЛУ.
Рассчитаем рассеиваемую мощность резисторов на примере формирователя логического уровня для первого датчика:
(25.)
, , ,(26.)
, , .где:
, , , , , - расчетные значения рассеиваемых мощностей. – уточненное значение тока делителя после выбора резисторов по ГОСТ. , , , , .Номинальное значение рассеиваемой мощности PHR должно быть не менее расчетной:
(27.)
Аналогично просчитав мощности резисторов делителей датчиков Д2 – Д3, определим суммарное потребление мощности резистивных делителей датчиков:
Ток потребления одного корпуса микросхемы компаратора равен 3,6 мА, в нашем случае 3 корпуса. Мощность потребления микросхемы выполняющую функцию 3И–НЕ (К564ЛА9) равна 20 мВт на каждый логический элемент. Общая потребляемая мощность ФЛУ будет равен сумме всех обозначенных ниже мощностей:
(28.)
Где:
– ток потребляемый микросхемой от двухполярного питания.