Структурная схема подвижной станции изображена на рис. 8.
Аналоговый речевой сигнал преобразуется в цифровую форму VSELP кодером. Речевой сигнал разбивается на сегменты по 20 мс, которые преобразуются в 159 кодированных бит передаваемых со скоростью 7,95 кбит/с.
Для канального кодирования используется сверточный код со скоростью г=1/2. В этом процессе пакет в 159 бит от речевого кодера разбивается на две группы бит: класс 1 - 77 бит, класс 2 - 82 бита. В группе бит 1 класса осуществляется указанное сверточное кодирование, причем 7 бит используются для обнаружения ошибок, биты второго класса передаются без кодирования. В результате преобразований в канальном кодере речевой фрагмент 20 мс представляется 260 битами, что соответствует скорости передачи 13,0 кбит/с. Структурные схемы канального кодировав приведены на рис. 9, Результирующая скорость (по результатам формирования TDMA кадра) составляет 16,2 кбит/с в расчете на одного абонента.
Пакет в 260 кодированных бит подвергается перемежению, принцип которого иллюстрируется рис. 10. Речевой фрагмент Y разбивается на две части. Одна часть передается в окне 1, вторая часть - в окне 4. Следующий фрагмент речи Z, длительностью 20 мс, передается в окне 4 иокне 1 в следующем кадре.
Для передачи сообщений по радиоканалу используется спектрально-эффективная n/4 DQPSK модуляция, реализуемая квадратурной схемой с прямым переносом на несущую частоту.
В целом, потенциальные характеристики стандарта IS-54 уступают характеристикам стандарта GSM. Для примера, на рис. 11 показаны графики зависимостей вероятности ошибки от отношения сигнал/помеха (C/I) в сетях стандартов GSM и D-AMPS (ADC) с учетом замираний сигнала при скорости перемещения подвижной станции 55 миль в час. Стандарт GSM обладает также преимуществами по отношению к стандарту IS-54 в части обеспечения безопасности связи функциональных возможностей. Кроме того, распространение GSM в глобальном масштабе (Европа, Азия, Африка, Австралия) позволяет абонентам этих сетей путешествовать по всему миру своим радиотелефоном в рамках автоматического международного роуминга. Стандарт D-AMPSпринят в Европе и России, где он ориентирован на региональное использование.
Характеристики стандарта DAMPS
Метод доступа - TDMA
Количество радиоканалов на несущую - 3
Рабочий диапазон частот: 824-840 МГц 869-894 МГц
Разнос каналов: 30 кГц
Эквивалентная полоса частот на один разговорный канал-10 кГц
Вид модуляции - n/4 DQPSK
Скорость передачи информации - 48 кбит/с
Скорость преобразования речи - 8 кбит/с
Алгоритм преобразования речи - VSELP
Рис. 6 Структура кадров в стандарте IS-54 с полускоростным речевым каналом.
G: Guard Time, R: Ramp Time, DVCC: Digital Verification Color Code, RSVD: Reserved for Future Use
Рис. 7 Структура кадров в системе D-AMPS для перспективного варианта с полускоростным речевым кодеком, когда будут использоваться шесть временных окон.
Как следует из графиков рис. 11, в реальных каналах связи для одинаковых значений вероятности ошибки в D-AMPS требуется отношение сигнал/помеха на 6-10 дБ больше, чем в GSM.
На рис. 12 показана зависимость качества приема речи от отношения сигнал/помеха (C/I) в аналоговых и цифровых (ADC и GSM) сетях сотовой связи. Как следует из этих графиков, Для обеспечения "приемлемого качества речи" энергетические затраты в каналах D-AMPS должны быть на 6-7 дБ выше, чем в GSM.
Худшие энергетические характеристики радиоканалов D-AMPS по отношению к GSM сказываются также и при планировании сети. Для размещения сот с одинаковыми частотами в D-AMPS требуются большие координационные расстояния, что снижает эффективность повторного использования радиочастот.
Рис. 8Структурная схема подвижной станции
Рис. 9 Структурные схемы канального кодирования.
Рис. 10Принцип перемежения.
Рис. 11. Графики зависимостей вероятности ошибки от отношения
сигнал/помеха (C/I) в сетях стандартов GSM и D-AMPS.
Рис. 12. Зависимость качества приема речи от отношениясигнал/помеха (C/I)
в аналоговых и цифровых (ADC и GSM) сетях сотовой связи.
Основная часть
Особенности проектирования сетей радиосвязи
Оценка ЭМС сетей радиосвязи
В настоящее время ввиду массового роста числа пользователей радиочастотным спектром, проблема ЭМС РЭС приобретает весьма важное значение не только в рамках отдельных служб радиосвязи, но и между разными службами. Успешное решение этой проблемы необходимо связывать прежде всего с развитием новых спектрально эффективных радиотехнологий, позволяющих при ограниченном частотном ресурсе существенно повышать потенциальную емкость сетей радиосвязи общего пользования. Эта комплексная проблема объединяет все элементы радиоинтерфейса современных сетей связи, включая радиосигналы как носители информации, средства их генерации, обработки и излучения (приема) и способы организации радиосвязи, - все в совокупности определяющее множественный (многостанционный) доступ в сети на основе методов частотного, временного, кодового и пространственного (или их совокупности) разделения каналов пользователей.
Под электромагнитной совместимостью РЭС понимается их способность одновременно функционировать в реальных условиях эксплуатации с требуемым качеством при воздействии на них непреднамеренных радиопомех, не создавая недопустимых радиопомех другим радиосредствам. Другими словами, ЭМС РЭС - это свойство РЭС функционировать без ухудшения качественных показателей ниже допустимого в заданной электромагнитной обстановке. Под электромагнитной обстановкой будем понимать совокупность электромагнитных полей РЭС различных служб радиосвязи в рассматриваемой области пространства. Оценка ЭМС РЭС является общей задачей и неотъемлемой частью процесса согласования условий совместной работы РЭС. В ходе оценки ЭМС РЭС вырабатываются условия, удовлетворяющие критерию ЭМС в данной электромагнитной обстановке. Эти условия могут включать: территориальные ограничения на размещение станции - источника помех; ограничение ЭИИМ станции - источника мешающих сигналов в направлении на станцию, подверженную помехе; защитные полосы и частотные ограничения РЭС; значение необходимого подавления боковых лепестков диаграмм направленности передающей и приёмной антенн; оптимизацию параметров расположения РЭС и ориентации антенн и др.
За критерий обеспечения ЭМС обычно принимают защитное отношение радиоприемника - минимальное допустимое отношение сигнал/радиопомеха на входе приемника, обеспечивающее требуемое качество функционирования в условиях воздействия непреднамеренных радиопомех. Численное значение защитного отношения, как правило, зависит от типа помехового сигнала. Иногда значение защитного отношения радиоприемника приводят к полосе пропускания его линейной части (совмещенный канал), т.е. не учитывают ослабление помехи за счет избирательных свойств приемника.
Для решения проблемы ЭМС РЭС используются организационные и технические меры. Технические меры обеспечения ЭМС обусловлены изменением технических параметров РЭС (например, снижение уровней внеполосных и побочных излучений передатчиков, повышение избирательных свойств приемников, снижение уровней боковых лепестков диаграмм направленности антенн и др.). Они достаточно эффективны, но могут быть применимы в основном при разработке новых типов оборудования. Для РЭС, находящихся в эксплуатации, наиболее приемлемыми и действенными мерами обеспечения ЭМС являются организационные меры. Они включают рациональное назначение рабочих частот, сочетаемое с введением частотных, территориальных, временных и пространственных ограничений, накладываемых на РЭС, - все вместе представляющее собой основу частотно-территориального планирования (ЧТП) сетей сухопутной подвижной связи, отвечающее требованиям эффективного использования спектра.
Уравнение ЭМСРЭС
Уравнение ЭМС РЭС устанавливает взаимосвязь энергетических, частотных и пространственных параметров РЭС полезного сигнала (рецептора радиопомех) и мешающих сигналов (источников непреднамеренных радиопомех), при которых обеспечивается требуемое качество функционирования РЭС. Обычно уравнение ЭМС составляют для "дуэльной" ситуации, когда оценка ЭМС производится для двух РЭС, одно из которых рассматривается в качестве приемника полезного сигнала, а второе РЭС является источником непреднамеренных радиопомех. В общем случае, возможно, учесть несколько источников непреднамеренных радиопомех.
Важнейшими факторами, которые необходимо учитывать при анализе ЭМС РЭС, являются потери при распространении радиоволн на трассе и флуктуации уровней принимаемых сигналов и радиопомех.