Смекни!
smekni.com

Щелевая антенна (стр. 1 из 2)

Балтийский Государственный технический университет

им. Д.Ф.Устинова (“Военмех”)

Кафедра И4

Реферат

ЩЕЛЕВАЯ АНТЕННА

Группа И-4
Студент

Санкт-Петербург

2004

I. СВЕДЕНИЯ ИЗ ТЕОРИИ

Элементарный щелевой излучатель представляет собой щель, прорезанную в идеально проводящем плоском экране неограниченных размеров. Параметры такого излучателя могут быть определены с помощью принципа двойственности. Принцип двойственности применительно к элементарному щелевому излучателю гласит: векторы Е и Н электромагнитного поля щели имеют такое же направление в пространстве и являются такими же функциями координат, как соответственно Н и Е поля элементарного электрического вибратора тех же размеров, что и щель.

Воспользовавшись принципом перестановочной двойственности можно показать, что поле, создаваемое симметричным щелевым излучателем, совершенно такое же как и поле, создаваемое симметричным электрическим вибратором, при взаимозамене направлений электрического и магнитного векторов.

Резонансной щелью называют узкую щель, длина которой 2l приблизительно равна половине длины волны в свободном пространстве. Ширина щели d составляет обычно менее десятой доли длины волны. На рис.1 представлены диаграммы направленности элементарного электрического вибратора (а) и элементарного щелевого излучателя (б) соответственно в магнитной и электрической плоскостях.

Характеристики направленности одиночной щели, в отличие от элементарного щелевого излучателя длиной 2l

/ 2, прорезанной в бесконечном экране, рассчитываются по формулам:

в плоскости Н

, (1)

в плоскости Е

, (2)

где

и
- угловые координаты точки наблюдения;

2l - длина щели;

.

Из рассмотрения приведенных формул следует, что щель, прорезанная в экране, не создает направленного излучения в Е-плоскости и ее диаграмма направленности имеет форму полуокружности с каждой стороны экрана. В Н-плоскости направленность излучения щели определяется формулой (1) и зависит от длины щели.

Выводы о направленности излучения щели, прорезанной в безграничном экране, можно использовать для определения диаграммы направленности щели, прорезанной в стенке волновода, учитывая, что излучение происходит лишь в полупространство. В Н-плоскости диаграмма направленности будет по-прежнему определяться формулой (1), так как излучение вдоль оси щели отсутствует, а, следовательно, размеры экрана в этом направлении существенной роли не играют. В Е-плоскости диаграмма направленности щели, прорезанной в волноводе, зависит от размеров стенки волновода и, следовательно, будет отличаться от полуокружности.

Поясним зависимость диаграммы направленности щели от размеров стенки волновода. Предположим, что щель прорезана в экране конечных размеров. В Е-плоскости формируется за счет протекания поверхностных токов проводимости (рис.2) и создания на краю экрана резкой неоднородности в распределении электрического поля и возникновения так называемых диафрагмированных волн. В любом направлении от щели в Е-плоскости результирующий вектор электрического поля определяется геометрической суммой вектора электрических полей трех волн. Фаза результирующего поля в точке наблюдения будет зависеть в основном от разности хода между диафрагмированными волнами и волной от щели. Соотношение фаз указанных векторов электрических полей будет зависеть от размеров экрана.

Следовательно, будут направления, в которых диафрагмированные волн будут ослаблять поле щели, а также направления, в которых поле щели будет усилено. Таким образом, диаграмма направленности в плоскости Е от щели, прорезанной в экране ограниченных размеров, или в волноводе, будет иметь “волнистый характер”. Примеры диаграмм направленности волноводно-щелевых антенн в зависимости от размеров экрана показаны на рис.2.

Более точный расчет показывает, что размеры экрана в направлении, перпендикулярном оси щели, оказывают значительное влияние на диаграмму направленности и особенно тогда, когда щель располагается на площадке несимметрично, в то время как размеры экрана в направлении оси щели мало влияют на ее направленные свойства.

Щель в волноводе возбуждается тогда, когда она широкой стороной пересекает поверхностные токи, текущие по стенкам волновода. При возбуждении волновода волной Н

имеет место поперечный ток и продольный ток на широких стенках волновода (рис.3,а). Эпюры распределения токов по поперечному сечению волновода приведены на рис.3,б. Поперечный ток в середине широкой стенки волновода равен нулю и нарастает до своего максимального значения к краям стенок. Распределение продольного тока представлено на рис.3,в.

sitednl.narod.ru/1.zip - база сотовых по Петербургу

Как известно, плотность поверхностного тока

связана с напряжением магнитного поля соотношением:

, (3)

где

- нормаль к рассматриваемой поверхности.

Для того чтобы щель излучала, ее следует прорезать вдоль силовых линий магнитного поля в волноводе или, что то же самое, поперек силовых линий тока проводимости, наводимого магнитным полем в стенках волновода. На рис.4 показаны возможные способы прорезания щели на широкой стенке волновода прямоугольного сечения, возбуждаемого волной типа Н

.

Интенсивность возбуждения щели зависит от ее положения на стенке волновода. Так, например, продольная щель при х

не излучает и поэтому не оказывает влияния на режим работы волновода. Примером такой щели является щель, по которой перемещается зонд в волноводной измерительной линии. По мере увеличения х
плотность поверхностного тока увеличивается, так как увеличивается напряженность магнитного поля, и, следовательно, интенсивность возбуждения щели возрастает. По мере увеличения интенсивности возбуждения щели входное сопротивление продольной щели и входная проводимость поперечной щели возрастают.

Интенсивность возбуждения щели зависит не только от ее расстояния от средней линии волновода х

, но и от расстояния между центром щели и закорачивающим поршнем. В волноводе без щелей, закороченном на конце, существуют стоячие волны. При этом на конце волновода (закорачивающий поршень) в соответствии с граничными условиями на идеальной металлической поверхности существует узел составляющей
и пучность
(рис.5).

Чтобы продольная возбуждалась с максимальной интенсивностью, ее центр надо поместить в пучность

, т.е. расстояние между поршнем и щелью - z
- должно равняться нечетному числу
/ 4. Для максимального возбуждения поперечной щели ее следует помещать в пучность
, т.е. на расстоянии равном четному числу
/ 2 от поршня.

Известно, что волновод прямоугольного сечения с волной типа Н

можно представить эквивалентной двухпроводной линией с волновой проводимостью

, (4)

где

- волновое сопротивление.

Щель, прорезанная в стенке волновода, представляет для последнего некоторую нагрузку и влияет на режим его работы. Часть энергии, идущей по волноводу, излучается щелью, часть отражается от нее, как от всякой неоднородности, и направляется обратно к генератору, часть проходит дальше. Влияние щели на режим работы волновода характеризуется входной проводимостью Y

и входным сопротивлением Z
. Входное сопротивление (проводимость) щели произвольной длины есть величина комплексная. В основном применяются резонансные щели (Х
= В
= 0). Чтобы щель была резонансной, ее длина должна быть несколько меньше
/ 2. При этом, чем шире щель, тем больше должна быть величина укорочения. Здесь также существует полная аналогия с симметричным вибратором. Приближенно укорочение может быть определено по формуле: