поступает на приемно-передающую антенну 3 и регулируемую
нагрузку 4. Отразившись от исследуемого объекта 5, сигнал
через двойной Т-образный мост поступает на кристаллический
детектор 6, на который одновременно приходит сигнал,
отраженный от согласованной нагрузки. Продетектированный
сигнал усиливается усилителем 7 после чего поступает на
индикаторное устройство 8. Любое смещение исследуемого объекта
вызывает разбаланс двойного Т-образного моста, что приводит к
появлению сигнала на индикаторном устройстве. Минимальное
регистрируемое виброперемещение зависит от собственных шумов
генератора, его мощности и стабильности, а также от
механической стабильности устройства.
Бесконтактное измерение параметров вибраций резонаторным методом возможно и при включении приемно-передающей антенны в
частотнозадающую цепь СВЧ генератора, т.е. при работе в
автогенераторном режиме. Такие системы называются автодинными
генераторами или просто автодинами.
В [5] приведен пример автодинного измерителя вибраций на
отражательном клистроне ( рис.3 ). Он состоит из
o -
|
|~~|~~| 1
| ~~~ |
+ | |
o--+-O-O |
| | --+--------------> Uвых
|_|___|
| || R
___ | 3 ___ 5 ||
| 2 |--------------------||---| 4 |< ||
~~~ ~~~ ||
<==>
Рис. 3. Автодинный измеритель вибраций на отражательном ~~~~~~~~
клистроне.
отражательного клистрона 1, волноводной системы 3,
короткозамыкающего поршня 2, диэлектрической антенны 4 и
исследуемого объекта 5. Вследствие вибрации объекта изменяется
режим генерации, появляется приращение постоянной составляющей
тока в цепи резонатора клистрона, а на резисторе R появляется
приращение напряжения.
Разрешающая способность данной установки до 1 мкм.
Недостаток заключается в том, что клистрон требует больших
питающих напряжений, что приводит к увеличению размеров
аппаратуры и большому энергопотреблению. Но этого можно
избежать, если в качестве СВЧ генератора использовать
твердотельные СВЧ диоды ( ДГ, ЛПД, ИПД, ТД и т.д. ).
3. АВТОДИНЫ НА ПОЛУПРОВОДНИКОВЫХ ДИОДАХ. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Как упоминалось выше, полупроводниковые СВЧ генераторы
обладают рядом достоинств [6,7]. Основными достоинствами
являются малые размеры и малое энергопотребление.
Сравнительные характеристики полупроводниковых СВЧ генераторов
приведены в таблице 1.
|-| | -------диод | +----------| мощность | ----------КПД | ----------+смещение | | ---------------|шумы | |
|| | ЛПД~~~ | | до 12 Вт.| | до 15 %max 31 % | десятки |Вольт | | сильные шумы |лавинообраз-я | |
|| | ИПД~~~ | | десятки|миллиВатт. | единицы% | сотни |миллиВольт| | слабые шумы || |
|||| | ДГ~~ | | десятки|миллиВатт-| единицы| Ватт. | зависитотрежимаработы | |4.5-7 В. | | | | тепловые шумы |на уровне |30000K (GaAs) | 1400K (InP) | |
||| | ТД~~ | | единицы| и десятки| микроВатт | единицы% | сотни |миллиВольт|| | |слабые шумы || |
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Таблица 1. Сравнительные характеристики полупроводниковых ~~~~~~~~~~
СВЧ генераторов.
Эквивалентная схема автодина на полупроводниковом диоде
приведена на рис. 4.
__________
| |
|~| |~|
| | Yд | | Yн
|_| |_|
| |
~~~~~~~~~~
Рис. 4. Эквивалентная схема автодина на полупроводниковом ~~~~~~~
диоде.
Эта эквивалентная схема может быть описана соотношением
(3.1), согласно первому закону Кирхгофа.
. .
Iyд + Iyн = 0 (3.1)
Величина Yн явлыется проводимостью нагрузки и элементов настройки схемы, Yд - средняя проводимость полупроводникового
прибора,
. .
Yд = I1 / U1 (3.2)
. .
I1, U1 - комплексные амплитуды тока и напряжения первой
гармоники на полупроводниковом элементе. Т.к. к обеим
. проводимостям приложено одно и то же напряжение U1, можно
записать баланс мощностей:
2 2
| U2 | * Yд + | U1 | * Yн = 0 (3.3)
Активная мощность на нагрузке (3.4) положительна
2
Рн = | U1 | * Re(Yн) (3.4)
отсюда вытекает, что
2
| U1 | * Re(Yд) = - Рн (3.5)
.
т.е. Yд должна иметь отрицательную действительную часть при
существовании в системе колебаний с ненулевой амплитудой.
Наличие отрицательной проводимости характеризует трансформацию
энергии: полупроводниковый элемент потребляет энергию
постоянного тока и является источником колебаний ненулевой
частоты.
В качестве трансформаторов энергии может быть использован
ряд двухполюсников диодов: туннельный диод (ТД), лавинно -
пролетный диод (ЛПД), инжекционно - пролетный диод (ИПД) и
диод Ганна (ДГ).
Процессы в полупроводниковых приборах описываются тремя
основными уравнениями в частных производных [8]: уравнением
плотности тока, характеризующим образование направленных
потоков заряда; уравнением непрерывности, отражающим накопление
и рассасывание подвижных носителей заряда, и уравнением
Пуассона, описывающим электрические поля в полупроводнике.
Точное решение этих уравнений с учетом граничных условий
в общем виде затруднительно даже на ЭВМ. Чтобы упростить
анализ вводят эквивалентные схемы полупроводниковых приборов.
ТД представляют собой приборы, наиболее удобные для
анализа, т.к. их эквивалентная схема более проста и точна, чем
схемы других полупроводниковых приборов. С практической точки
зрения ТД представляет собой интерес при создании маломощных
автодинов в коротковолновой части сантиметрового диапазона.
ИПД (BARITT) обладает малой генерируемой мощностью [9],
но из-за низкого уровня шумов и малого напряжения питания
являются перспективными для допплеровских автодинов.
ЛПД обеспечивает наибольшие КПД и мощность колебаний
[10]. Но его главным недостатком является относительно высокий
уровень шумов, обусловленный , в первую очередь, шумами
лавинообразования.
Таким образом, на сегодняшний день наиболее подходящим
полупроводниковым СВЧ генератором для автодинов является диод
Ганна, который, хотя и имеет достаточно высокий уровень шумов
и низкий КПД, генерирует колебания достаточно высокой мощности
( от десятков миллиВатт до единиц Ватт ) и требует низкого
[11] напряжения питания ( 4.5 - 7 Вольт ).
4. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ.
~~~~~~~~~~~~~~~~~~~~~~~
Целью данной работы являлось математическое моделирование
процессов, происходящих в автодине на диоде Ганна с
вибрирующей нагрузкой. Для этого была составлена эквивалентная
схема автодина ( рис.5 ).
c --> i2
|~~~~~~~~~~~~~~~|~~~~~~~~~~~~|~~~~~~~~|
| | > | |
| i1 | > Lk | |
| V > | |
| > | |
| |a | |
| |~~~~~~~| | |
| | | | >
|~| | |~| | >
| | Yn Cd === | | Yd === Ck > Ln
|_| | |_| | >
| | | | >
| |_______| | |
| |b | |
| | | |
| |~| | |
| | | Ys | |
| |_| | |
|_______________|____________|________|
d
Рис. 5. Эквивалентная схема автодина на диоде Ганна. ~~~~~~~~
Схема самого диода Ганна [6] включает проводимость диода
Yd, емкость диода Cd, проводимость активных потерь Ys,
индуктивность корпуса Lк и емкость корпуса Ск. К диоду
подключены волноводная система и нагрузка, которые были
представлены в виде активной проводимости нагрузки Yn и
индуктивности нагрузки Ln.
Эта эквивалентная схема описывается системой
дифференциальных уравнений (4.1-4.4), полученных с
использованием I и II законов Кирхгофа [12].
dUab/dt = ( i1 - Yd(U0 + Uab) Uab ) / Cd (4.1)
dUcd/dt = ( -i1 - Ucd Yn - i2 ) / Ck (4.2)
di1 /dt = ( Ucd - Uab - i1 / Ys ) / Lк (4.3)
di2 /dt = Ucd / Ln (4.4)
Нагрузка с волноводной системой была представлена в виде
линии, нагруженной на комплексныю проводимость отражающей
поверхности ( рис.6 ).
~~~~~~~~~~~~~~~~~~~~~~~|
. |~| .
Yn | | Z
|_|
_______________________|
Рис. 6. Представление нагрузки в виде нагруженной линии. ~~~~~~~
.
Комплексная проводимость нагрузки Yn была выражена через
коэффициент отражения волны от объекта ( нагрузки ). Для этого
была решена система уравнений (4.5-4.6) [12].
. . .
U = Uпад + Uотр (4.5)
. . .
I = Iпад + Iотр , (4.6)
. .
где Uпад, Iпад - комлексные напряжение и ток падающей волны, . .
Uотр, Iотр - комплексные напряжение и ток отраженной волны.
Коэффициент отражения представляет собой отношение амплитуд
отраженной и падающей волн.
. .
G = Uотр / Uпад (4.7)
В результате решения этой системы было получено выражение
для комплексной проводимости нагрузки.
. 1 1 - G exp ( -2 j l )
Yn = --- * -------------------------- , (4.8) Zв 1 + G exp ( -2 j l )
где Zв - импеданс пустого волновода
Zв = m m0 W / (4.9)
W - частота генератора, m - магнитная проницаемость, m0 -
магнитная постоянная, l - расстояние до объекта, - фазовая
постоянная.
Для подстановки в систему уравнений (4.1-4.4) комплексная
проводимость нагрузки была разделена на действительную и
мнимую части.
2 . 1 1 - G
Re ( Yn ) = --- * ---------------------------2 (4.10) Zв 1 + 2 G cos ( 2 l ) + G
2
. 1 2 G sin ( 2 l )
Im ( Yn ) = --- * ---------------------------2 (4.11) Zв 1 + 2 G cos ( 2 l ) + G
Действительная часть добавляется к некоторому неизменному
значению активной проводимости нагрузки
.
Yn = Yn0 + Re ( Yn ) (4.12)
Мнимая же часть в зависимости от своего знака может
характеризовать или емкость, или индуктивность. В случае, если
.
Im ( Yn ) > 0, она характеризует емкость, которая добавляется
в Ск.
.
Ск = Ск0 + Im ( Yn ) / W (4.13)
В противном случае она характеризует индуктивность, которая
добавляется в Ln.
.
Ln = Ln0 + 1 / ( |Im( Yn )| W ) (4.14)
Чтобы найти проводимость диода, необходимо
продифференцировать выражение ВАХ диода по напряжению:
M0 U U 4
------ + Vs [ ----- ]
L Ep L
i(U) = q n S * ------------------------------ (4.15)
U 4 1 + [ ----- ]
Ep L
где q - элементарный заряд, n - концентрация носителей заряда,
М0 - подвижность носителей заряда, U - приложенный потенциал,
S - сечение диода, L - длина диода, Vs - скорость насыщения
носителей заряда, Ep - пороговое поле.
i, A. |
|
0.09 +
|
0.08 +
|
0.07 +
|
0.06 +
|
0.05 +
|
0.04 +
|
0.03 +
|
0.02 +
|
0.01 +
|
+-----+-----+-----+-----+-----+-----+-----+----->
0 1 2 3 4 5 6 7 U, В.