Смекни!
smekni.com

Устройство измерения отношения двух напряжений (стр. 9 из 10)

В помещении приняты меры безопасности при эксплуатации электроустановок. Обеспечена недоступность токоведущих частей для случайного прикосновения (все приборы находятся в корпусах, все панели заблокированы). Осуществляются организационные мероприятия. Это инструктаж по технике безопасности на рабочих местах, периодическая проверка качества заземления и сопротивления изоляции. Кроме того применено зануление, расчет которого приведен далее.

6.2 Расчет зануления

Опасность поражения токомпри прикосновении к корпусу и другим нетоковедущим металлическим частям электрооборудования, оказавшимся под напряжением вследствие замыкания на корпус и по другим причинам, является основной причиной получения персоналом травм. Эта опасность может быть устранена быстрым отключением поврежденной установки от питающей сети и вместе с тем снижения напряжения корпуса относительно земли. Для этой цели служит зануление.

Зануление - преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением.

Нулевой защитный проводник – это проводник, соединяющий зануляемые части с глухозаземленной нейтральной точкой источника тока или ее эквивалентом. Эквивалентом нейтральной точки источника тока могут быть: средняя точкаисточника постоянного тока, заземленный вывод источника однофазного тока, искусственная нейтральная точка сети, созданная с помощью трансформаторов, резисторов и т. п.

Принцип действия зануления - превращение замыкания на корпус в однофазное короткое замыкание (т.е. между фазным и нулевым защитным проводниками) с целью вызвать большой ток, способный обеспечить срабатывание защиты и тем самым автоматически отключить поврежденную установку от питающей сети.

Основные требования, предъявляемые к занулению:

· проводник должен иметь проводимость не менее 50 % от проводимости фазного провода;

· повторные заземлители должны располагаться через каждые 250 метров, а также находится на концах линии и ответвлений длинной более 200 метров;

· сопротивление заземления нейтрали (R0) должно быть не более 4 Ом (лишь для источников небольшой мощности до 100 кВА сопротивление нейтрали может составлять 10 Ом );

· сопротивление заземления каждого из повторных заземлителей (Rп) должно быть не более 10 Ом, а в сетях, в которых R0 допускается, оно может составлять 30 Ом при условии, что число повторных заземлителей в этой сети не менее трех;

· ток короткого замыкания Iк должен в три раза превышать номинальный ток ближайшей плавкой вставки предохранителя или номинальный ток расцепителя автоматического выключателя;

· в одной и той же сети запрещается одновременно выполнять защитное заземление и зануление различных корпусов. Одновременное заземление и зануление одного оборудования не представляет опасности и допускается.


Рисунок 6.2 - Схема зануления оборудования.

Цельюрасчета зануления является определение условий, при которых оно быстро отключает поврежденную установку от сети, выбор сечения фазного и нулевого проводника, выбор устройства защиты, расчет повторного заземления нейтрали.

Автомат защиты размещается в распределительном щите. Схема зануления рабочих мест приведена на рисунке 6.2. Цифрами обозначены :

1 - распределительный щит;

2 - нейтраль источника тока;

3 - защитный нулевой проводник;

4 - повторное заземление нейтрали;

5 - рабочие места.

При замыкании фазы на зануленный корпус электроустановка автоматически отключится, если значение тока однофазного короткого замыкания Iк, А, удовлетворяет условию :

Iк ≥ к * Iном ,

где: Iк - номинальный ток плавкой вставки предохранителя или ток срабатывания автоматического выключателя, А;

к - коэффициент кратности тока.

Для автоматов с номинальным током до 100 А кратность тока должна быть не менее 1,4.

Определим ток срабатывания автомата защиты. Предполагаем, что суммарная потребляемая мощность измерительной аппаратурой, приборами освещения и другими установками и приспособлениями не превышает 6 кВт. Тогда потребляемый ток :

Iпот = 6000 / 220 = 27,3 А ; (6.1)

Ток срабатывания автомата защиты должен быть больше, чем потребляемый. Автоматы, выпускаемые промышленностью рассчитаны на стандартный ряд номинальных токов срабатывания. Большее ближайшее значение из этого ряда составляет 30 А. Исходя из этого выберем автомат защиты типа .

Определим ток короткого замыкания:

; (6.2)

где Uф - напряжение сети ; Rф и Rн - активные, а Хф и Хн- внутренние индуктивные сопротивления фазного и защитного нулевого проводников соответственно ; Хп - сопротивление взаимоиндукции петли фаза - ноль.

Для медных и алюминиевых проводов можно пренебречь Хф и Хн. Также для применяемого кабеля можно пренебречь величиной Хп. С учетом сделанных допущений, а также формулы (6.1) :

; (6.3)

Полная проводимость нулевого защитного провода согласно сделанных ранее замечаний :

Rн ≤ 2 *Rф ; (6.4)

Пусть Rн = 1.5*Rф , тогда формулу (3) запишем следующим образом:

(6.5)

В справочных данных для трансформатора мощностью 25 кВт при схеме соединения обмоток типа «звезда» и напряжением 380/220 В полное сопротивление трансформатора ZТ = 3,11 Ом.

Определим сопротивление фазного провода Rф :

; (6.6)

Rф = 2,93 Ом.

Определим сопротивление защитного провода Rн = Rф .

Выберем сечение проводов. При наибольшей длительно допустимой нагрузке для медных проводов с резиновой изоляцией 30 А (при температуре окружающей среды 250С ) сечение составляет 2,5 мм2 .Сечение алюминиевых проводов при тех же условиях - 4 мм2.

Проведем расчет поверхностных заземлителей нейтрали. Согласно ПУЭ сопротивление заземления нейтрали трансформатора при напряжении 380/220 В не должно превышать 4 Ом. Сопротивление каждого из повторных заземлителей должно быть не более 10 Ом.

Повторные заземлители расположены на воздушных линиях через каждые 250 м. Рассмотрим два варианта заземления :

1. Заземлители расположены в черноземе.

2. Заземлители расположены в глинистой почве.

Соответственные расчетные удельные сопротивления на черноземе r1=200 Ом*м, на грунте r2 =40 Ом * м.

В качестве заземлителей применим трубчатые вертикальные электроды диаметром 50 мм и длинной 2,5 м, расположенные на глубине 0,7 м.

Определим сопротивление растекания тока одного вертикального стержневого электрода:

; (6.7)

где l и d - длинна и диаметр электрода соответственно, м ;

t - глубина заложения середины электрода от поверхности земли, м ;

r - расчетное удельное сопротивление грунта, Ом*м.

1. Для чернозема Rc1 = 47,1 Ом.

2. Для грунта Rc1 = 9,4 Ом.

По рассчитанным данным можно сделать вывод, что для обеспечения качественного заземления на грунте достаточно одного заземленного электрода, в то время как на глинистой почве необходимы несколько электродов, соединенные стальной полосой сечением 4х12 мм и длинной 2,5 м. Определим сопротивление растекания тока для полосы :

; (6.8)

где L - длинна полосы, м;

b - ширина полосы, м;

t - глубина заложения полосы, м.

Rп = 76 Ом

Определим общее сопротивление заземляющего устройства расположенного на глинистой почве:

; (6.9)

где hс и hн - коэффициенты экранирования, приведенные в [10].

Rз = 9,1 Ом.

Таким образом, чтобы обеспечить требуемое сопротивление повторных заземлителей не более 10 Ом необходимо применить на глинистой почве один вертикальный электрод и шесть вертикальных электродов, соединенных стальной полосой при черноземе. Заземлители выполнены из стальных труб длиной 2,5 м, диаметром 50 мм и вкопаны на глубину 0.7 м.

6.3 - Охрана окружающей среды

В наш век научно технической революции, загрязнение окружающей среды становится важной проблемой для мирового сообщества. Основным источником загрязнения атмосферного воздуха являются промышленные предприятия, тепловые электростанции, автотранспорт, самолеты и сельскохозяйственное производство. Ежегодно в атмосферу планеты выбрасывается 200 млн. т. оксида углерода, 151 млн. т. оксида серы, свыше 500 млн. т. различных углеводородов, более 250 млн. т. мелкодисперсных аэрозолей (пыли) и многих других веществ.