Смекни!
smekni.com

Усилитель мощности (стр. 5 из 6)

5. АЧХ и ФЧХ усилителя на транзисторе VT4

Коэффициент усиления усилителя:

Фазовый сдвиг усилителя:

АЧХ и ФЧХ данного усилительного каскада имеют вид:

6. Расчет искажений на верхних частотах

1. Повторитель на транзисторах VT10-VT13:

VT12, 13:

VT10, 11:

2. Усилитель на транзисторе VT9:

3. Усилитель на VT4:

4. Усилитель на VT1:

Суммарное значение коэффициента частотных искажений:

7. Расчет стабилитронов

Стабилитроны используются для понижения напряжения питания для отдельных каскадов.

Стабилитрон VD1:

Для подачи питания использован стабилитрон КС515Г со следующими параметрами:

Uст, В Iст min, mA Iст ном, mA Iст max, mA Pст max, Вт
15,0 3 10 31 0,25

Стабилитрон VD2:

Uст, В Iст min, mA Iст ном, mA Iст max, mA Pст max, Вт
12,0 0,5 4 13 0,125

Для подачи питания использован стабилитрон КС212Ж со следующими параметрами:

Стабилитрон VD3:

Uст, В Iст min, мА Iст ном, mA Iст max, мА Pст max, Вт
9,1 3 10 20 0,25

Для подачи питания использован стабилитрон КС191С со следующими параметрами:

8. РАСЧЕТ РАДИАТОРОВ ОХЛАЖДЕНИЯ

В выходном каскаде стоят транзисторы большой мощности, следовательно, необходимо поставить радиаторы для отвода теплоты. Площадь радиатора рассчитывается по следующей формуле:

S=1000 / (RTn-csT) см2

где sT - коэффициент теплоизлучения от теплоотвода в окружающую среду,

RTn-c=(Tn-Tc)/Pк - тепловое сопротивление переход-среда.

Tc- температура окружающей среды (30°С),

Тn- температура p-n -перехода.

Для дюралюминия sT=1.5 мВт/см2°С.

1. Транзисторы VT12, VT13: КТ-817Б

Необходимо рассеять мощность 8.5 Вт. Tn=150°С

2. Транзисторы VT10: КТ-815, VT11: КТ-814Б

Необходимо рассеять мощность 2.1 Вт. Tn =125°С

9. Технология изготовления печатных плат

Печатная плата представляет собой изоляционное основание с нанесёнными на него элементами печатного монтажа. К элементам печатного монтажа относятся: проводники, контактные площадки, зазоры, отверстия и т.д.

Печатная плата является несущим элементом. На ней размещаются навесные элементы (интегральные схемы и дискретные радиокомпоненты), разъёмы и другие детали. В качестве оснований печатных плат используют обычно листовые фольгированные материалы, которые представляют собой слоистый прессованный пластик (гетинакс или стеклотекстолит), облицованный с одной или двух сторон медной фольгой толщиной 0.035 или 0.05 мм. В радиоэлектронной аппаратуре и приборах в основном применяют фольгированный стеклотекстолит по ГОСТ 10316-62.

Существуют два вида конструкции печатных плат – однослойные и многослойные.

Как правило, однослойные печатные платы выполняются с двухсторонним монтажом – проводники располагаются с двух сторон. Переходы с одной стороны платы на другую осуществляются через металлизированные отверстия в ней.

В основе технологии изготовления двусторонних печатных плат (ДПП) лежит использование фольгированных диэлектриков.

В настоящее время для изготовления ДПП применяется комбинированный метод, который включает в себя два способа: негативный и позитивный.

Технологический процесс получения ДПП комбинированным негативным способом состоит из следующих этапов: получение заготовок и подготовка поверхности фольги, нанесение на плату защитного покрытия (фоторезиста), получение изображения печатных проводников экспонированием и проявлением, удаление незащищенных участков фольги травлением, удаление фоторезиста с проводников, нанесение на основание защитного поврытия, обработка отверстий, подлежащих металлизации, химическая металлизация отверстий, электролитическая металлизация отверстий и печатных проводников, покрытие печатных проводников сплавом олово-свинец, механическая обработка контура платы.

Технологический процесс получения ДПП комбинированным позитивным способом состоит из следующих этапов: получение заготовок и подготовка поверхности фольги, нанесение на плату защитного покрытия (фоторезиста), получение изображения печатных проводников экспонированием и проявлением, нанесение защитной лаковой плёнки, сверление отверстий и их химическое меднение, удаление защитной лаковой плёнки, электролитическое меднение отверстий и проводников, нанесение кислостойких сплавов, удаление фоторезиста, химическое травление фольги с пробельных мест, осветление проводящих покрытий, механическая обработка контура печатной платы.

В том случае, если ДПП не удовлетворяет требованиям, в частности не позволяет разместить большое число навесных элементов из-за малого объёма, применяют многослойные печатные платы (МПП).

Известно несколько способов изготовления МПП, однако все они имеют недостатки: большую стоимость и длительность проектирования, значительные затраты времени на изготовление, на налаживание производства, трудности внесения изменений.

Исходным документом при конструировании печатных плат является принципиальная электрическая схема. Для одной принципиальной схемы можно построить несколько вариантов топологии печатной платы, т.е. печатного монтажа.

10. СПЕЦИФИКАЦИЯ

10.1. Резисторы

Позиционное обозначение Наименование Количество
R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15, R16, R17, R18, R19, R20, R21, R22, R23, R24, R28, R29,R30, R31, R32, R33, R34, R35, R41, R42, R43 МЛТ-0,125 35
R26, R39 МЛТ-0,25 2
R25, R36, R37, R38, R40 МЛТ-0,5 5
R27 МЛТ-1 1
R44 СП3-13 1

10.2. Конденсаторы

Позиционное обозначение Наименование Количество
C3, C8, C11 К53-1 3
C16, C17 К50-12 2
C1, C2, C4, C5, C6, C7, C9, C10, C12, C13, C14, C15, C18, C19 К50-16 14

10.3. Транзисторы

Позиционное обозначение Наименование Количество
VT1 КТ301Б 1
VT2, VT3, VT5, VT6, VT7, VT8 КТ315Б 6
VT4 КТ340Б 1
VT11 КТ814Б 1
VT10 КТ815Б 1
VT12, VT13 КТ817Б 2
VT9 КТ961Б 1

10.4. Стабилитроны

Позиционное обозначение Наименование Количество
VD1 КС515Г 1
VD2 КС212Ж 1
VD3 КС191С 1

11. КАРТА РЕЖИМОВ

11.1. Резисторы

Позиционное обозначение Напряжение, В Ток, А Мощность, Вт Номинальное сопротивление, Ом Тип
R1 0.0179 0.000066 0.000001187 270 МЛТ-0,125
R2 0.0869 0.000054 0.0000047 1600 МЛТ-0,125
R3 13.55 0.0024 0.033 5600 МЛТ-0,125
R4 1.38 0.00203 0.0028 680 МЛТ-0,125
R5 12.13 0.00404 0.049 3000 МЛТ-0,125
R6 0.8 0.00444 0.0036 180 МЛТ-0,125
R7 0.71 0.0000866 0.00006 8200 МЛТ-0,125
R8 11.29 0.0000868 0.00098 130000 МЛТ-0,125
R9 0.0084 0.00000008 0.000000007 10000 МЛТ-0,125
R10 9.88 0.0021 0.021 4700 МЛТ-0,125
R11 0.0842 0.000077 0.00000645 1100 МЛТ-0,125
R12 1.499 0.000062 0.000097 24000 МЛТ-0,125
R13 10.285 0.0000935 0.00096 110000 МЛТ-0,125
R14 1.3 0.000072 0.000094 18000 МЛТ-0,125
R15 6.842 0.00311 0.0213 2200 МЛТ-0,125
R16 0.626 0.00313 0.00196 200 МЛТ-0,125
R17 2.627 0.000164 0.00043 16000 МЛТ-0,125
R18 6.473 0.000155 0.0004 43000 МЛТ-0,125
R19 0.0155 0.0000015 0.000000024 10000 МЛТ-0,125
R20 5.057 0.00389 0.0197 1300 МЛТ-0,125
R21 2.4255 0.000475 0.00115 5100 МЛТ-0,125
R22 6.6745 0.000445 0.00297 15000 МЛТ-0,125
R23 0.0445 0.00000445 0.000000198 10000 МЛТ-0,125
R24 5.23 0.01113 0.0582 470 МЛТ-0,125
R25 30 0.01 0.3 3000 МЛТ-0,5
R26 33 0.006 0.195 5600 МЛТ-0,25
R27 35.9 0.01908 0.716 1800 МЛТ-1
R28 1.32 0.0066 0.0087 200 МЛТ-0,125
R29 10.668 0.0067 0.07113 1600 МЛТ-0,125
R30 1.365 0.0015 0.00205 910 МЛТ-0,125
R31 2.145 0.00165 0.00354 1300 МЛТ-0,125
R32 2.4 0.015 0.036 160 МЛТ-0,125
R33 0.40452 0.02023 0.00818 20 МЛТ-0,125
R34 19.8 0.00165 0.03267 12000 МЛТ-0,125
R35 4.01516 0.02008 0.08061 200 МЛТ-0,125
R36 24.091 0.02008 0.48364 1200 МЛТ-0,5
R37 2.46683 0.13705 0.33807 18 МЛТ-0,5
R38 0.73388 0.40771 0.29921 1,8 МЛТ-0,5
R39 1.91865 0.10659 0.20451 18 МЛТ-0,25
R40 0.7766 0.43144 0.33506 1,8 МЛТ-0,5
R41 0.04 0.0018 0.000073 22 МЛТ-0,125
R42 0.366 0.001525 0.00056 240 МЛТ-0,125
R43 1.782 0.0002376 0.00042 7500 МЛТ-0,125
R44 2.043 0.001857 0.0038 1100 СП3-1

11.2. Конденсаторы