Смекни!
smekni.com

Технологический процесс изготовления микромодуля этажерочного типа применительно к серийному производству (стр. 3 из 4)

Микромодуль 4 при разрезке должен иметь некоторую подвижность для самоустановки, чтобы не произошло отрыва проводника от места пайки.

После разрезки соединительных проводников производится обрезка выводов и подрезка ключевых выводов.

Контроль производится в специальном контактирующем устройстве, подсоединяемом к измерительному стенду или контрольно – измерительной стойке.

Операция приготовление компаунда.

Состав компаунда ЭК-16Б в частях по массе:

1. Смола эпоксидная ЭД-5 100

2. Трикрезилфосфат 20

3. Кварц пылевидный 40

4. Слюда молотая 20

5. Сажа турбулентная 0.2

6. Полиэтиленполиамин 16

Для приготовления компаунда пылевидный кварц прокаливается в муфельной печи при температуре 850 С в течении 2-3 ч и просеивается . Слюда и сажа сушатся в термостате при температуре 150 С в течении 2 ч и также просеиваются . Все компоненты компаунда взвешиваются , прогреваются в течение 3ч при температуре 100 С и загружаются (кроме отвердителя) в фарфоровые барабаны , предварительно наполненные на 1/3 объема фарфоровыми шарами. Перемешивание композиции производится в течение 3 ч при частоте вращения барабанов 60-70 об/мин, затем

cмесь вакуумируется и охлаждается до температуры 35-40С . После охлаждения в смесь вводится требуемое количество полиэтиленполиамина и смесь вновь вакуумируется в вакуумном шкафу в течение 5-7 мин при температуре 40 С.

Приготовленный таким образом компаунд готов для заливки. Следует отметить, что жизнеспособность компаунда 30 мин, поэтому его готовят в количествах, необходимых для работы лишь в данный момент времени.

Перед заливкой формы проходят специальную подготовку. Детали форм очищают от остатков компаунда, протирают сухой бязью. На рабочие поверхности формы и каналы наносится тонкий слой антиадгезионной смазки (гидрофобизирующая жидкость ГКЖ-94).

После сборки формы она прогревается в течении 2 часов при температуре 115 С, охлаждается до 30-40 С , разбирается и протирается марлевым тампоном.

Операция rерметизации.

Поскольку вакуумплотная герметизация микромодулей с помощью металла, стекла и керамики сложна , экономически целесообразной следует признать герметизацию с помощью органических диэлектриков.

Учитывая адгезионные свойства, технологичность и допустимую температуру полимеризации +70 С (допустимая температура термостойкости полупроводниковых микроэлементов +80 С), для герметизации может быть выбран эпоксидный компаунд ЭК-16Б. Компаунд ЭК-16Б обладает минимальным воздействием на параметры микроэлементов по сравнению с другими компаундами. Заливку микромодулей эпоксидным компаундом ЭК-16Б осуществляют методом заливки под вакуумом в открытой форме.

Форма для заливки(рис.33) представляет собой полностью разборную конструкцию с высоким классом чистоты обработки оформляющих поверхностей.

В матрицу вставляются сухарики, устанавливающие размеры микромодуля в диапазоне от 12 до 25 мм, имеющие 12 отверстий с тонкой стенкой для предотвращения заливки компаундом соединительных проводников.

Открытая форма позволяет производить повторное вакуумирование компаунда непосредственно в форме для удаления пузырьков воздуха из массы компаунда.

Заливка под вакуумом обеспечивает больший процент выхода годных микромодулей, а в некоторых случаях, например при использовании микроэлементов типа КМOП крепление которых на микроплате осуществляется с помощью контактола, является единственно возможной. Эксперименты, проведенные в заводских условиях показали, что воздействие на параметры микроэлементов при заливке под вакуумом оказывается меньшим, чем при заливке под давлением. Таким образом, метод заливки под вакуумом предпочтительнее, хотя и является менее производительным.

На микромодули перед заливкой надевают специальные полиамидные насадки с резиновой прокладкой оформляющие торцевые стороны микромодуля и предотвращающие попадание компаунда на выводы. Насадки также смазываются жидкостью ГКЖ-94 или жидким каучуком СКТ.

Микромодули с насадками укладываются в формы для заливки. Формы соединяют с помощью ключа и помещают в термостат на 3 ч при температуре 70 С , после чего в них заливают компаунд . Форма с залитыми микромодулями выдерживается на воздухе до 30 мин , затем помещается в термостат и выдерживается в нем в течении 1.5 ч при температуре 70 С.

После отверждения компаунда форма извлекается из термостата , охлаждается до температуры 30-40 С и разбирается , а насадки с микромодуля снимают. На шлифовальном станке с помощью специального приспособления снимается облой с ребер микромодулей. Фаска при снятии облоя должна быте не более 0.5x45 С. Одна из граней микромодуля ,

неоформленная поверхностью формы , шлифуется на шлифовальном станке при скорости перемещения стола 5-12 м/мин и поперечной подаче шлифовальной бабки за ход стола от 0.2 – 1.0 мм. Шлифованная поверхность лакируется эпоксидным лаком Э-4100 с добавлением полиэтиленполиамина.

Операция визуального контроля.

Проверка микромодулей производится на отсутствие деформации и обрыва выводов, отсутствие царапин и сколов, отсутствие облоя на торцевых поверхностях , инородных вкраплений , выбоин и других дефектов , ухудшающих влагоустойчивость и внешний вид микромодуля.

Проверка геометрических размеров микромодулей производится на часовом проекторе ЧП-2 или калибровочными скобами.

Операция тренировки.

Для микромодулей в связи с возрастанием удельного воздействия температурных, механических и других факторов на микроэлементы характерен резко выраженный период приработки. Это приводит к необходимости введения в технологический процесс операции тренировки, как одного из методов, позволяющих выявить и отбраковать дефектные микромодули. Режим тренировки должен предусматривать воздействие на микромодули тех факторов, которые не снижают качество микромодулей,

а лишь ускоряют выявление скрытых дефектов.

Наибольшее распространение получили термотренировка,

электротренировка , термотоковая тренировка и термоциклирование.

Термотренировка – выдержка при температуре окружающей среды 70С в течении 200 ч. Выбор температуры тренировки обосновывается предельной рабочей температурой германиевых полупроводниковых приборов (73 С).

Время тренировки (200 ч) соответствует примерно времени приработки большинства микромодулей.

Электротермотренировка – выдержка при температуре окружающей среды 70 С в течении 200 ч под электрической нагрузкой , соответствующей рабочему режиму схемы. Электротермотренировка была введена в связи с малой эффективностью термотренировки для некоторых транзисторных схем (наличии отказов после двухсотчасовой термотренировки). Однако требуемое при электротермотренировке сложное и дорогостоящее оборудование (индивидульные стенды, измерительные приборы и т.д.) делает электротермотренировку экономически невыгодной и практически нереализуемой, за исключением отдельных наиболее ответственных типов схем.

Термотоковая тренировка – выдержка при температуре окружающей среды 70 С в течении 200 ч под унифицированной электрической нагрузкой : однополупериодное синусоидальное напряжение 6.3 В или 12.6 В частотой 50 Гц (в зависимости от типа микромодуля). Термотоковая тренировка для транзисторных схем эффективнее термотренировки и в то же время не требует сложного оборудования. Герметизированные и прошедшие термотренировку микромодули проверяют на соответствие техническим условиям. Наиболее рационально начинать контроль микромодулей с проверки на функционирование по наличию сигналов на выходе микромодуля без измерения их параметров. Это позволит сразу же отбраковать микромодули, в которых в процессе сборки, герметизации и термотренировки вышли из строя микроэлементы или имеются нарушения монтажных соединений. Однако единственным надежным методом оценки качества микромодулей является контроль по выходным параметрам, который позволяет учесть влияние всех звеньев технологического процесса и качество микроэлементов.

Операция контроля технических параметров.

Контроль технических параметров можно проводить с помощью стандартных измерительных средств полуавтоматически с помощью специальных установок. В серийном производстве применяется полуавтоматический агрегат контроля микромодулей по электрическим параметрам с разбраковкой изделий на две группы: “Годен”, “Брак”.

Оценка качества импульсных и линейных схем на агрегате производится по следующим параметрам : амплитуде, длительности и переднему фронту импульсов, частоте повторения, полосе пропускания и сбоям триггеров.

На рис.35 показана функциональная блок – схема агрегата контроля.

Контактирующий и исполнительный механизм (КИМ) служит для подключения микромодуля (М) к соответствующим блокам контрольно-измерительной аппаратуры, выдачи команд и реализации результатов контроля. Входное устройство (ВУ) предназначено для подачи на контролируемый микромодуль напряжений питания и входных сигналов, а также для согласования выхода микромодульной схемы с блоком входного усилителя (БВУ).

Блок входного усилителя служит для усиления входных сигналов, необходимых для нормальной работы блоков контроля: блока контроля переднего фронта импульсов (БКФ), блока контроля полосы пропускания и частоты следования контролируемых сигналов (БКПУ), блока контроля амплитуды контролируемых сигналов и сбоев триггеров (БКАС), блока контроля длительности импульсов. В блоке автоматики (БА) сигналы с блоков контроля суммируется и результирующий сигнал при забракованном изделии поступает на счетчик годных изделий.