1.1. Анализ отдельных случаев.
1.1.1. Явление, связанное с волнами типа свистов. Первоначально анализ был ограничен поиском рассеяния в режиме сильной диффузии электронов с энергиями выше 235 кэВ. Вероятно, в силу жесткости этого критерия удалось выявить только семь случаев, которые можно было отнести к рассеянию, связанному со свистовыми волнами. Во всех случаях они относились к позднему утреннему сектору, где появление хоров максимально. Рассеяние наиболее значительно в самом низкоэнергичном (33 кэВ) канале, ослабевая при переходе к более высоким энергиям. Не обнаружено никакого одновременного высыпания ионов.
1.1.2. Явление, связанное с электромагнитной ионно-циклотронной волной. В данных за 14 месяцев только четыре события удовлетворяют критерию, определяющему рассеяние электронов электромагнитными ионно-циклотронными волнами. Все они наблюдались на малых L вблизи вечернего меридиана, где такие волны предпочтительно возбуждаются. Не наблюдалось никакого высыпания электронов при энергиях ниже 160 кэВ. При 235 кэВ имеются данные, что конус потерь частиц частично заполнен. По мере увеличения энергии электронов интенсивность рассеяния прогрессивно растет, достигая уровня рассеяния в режиме сильной диффузии на энергиях более 850 кэВ. Ограниченная по широте область высыпания релятивистских электронов погружена в более широкую зону высыпания ионов в режиме сильной диффузии.
1.1.3. Явление, связанное с электростатической ионно-циклотронной волной. Большая часть (302 случая) выявленных событий имеет особенность, характерную для рассеяния частиц электростатическими ионно-циклотронными волнами: широкий интервал энергий изотропного потока высыпающихся электронов, сопровождающихся высыпанием ионов в режиме сильной диффузии. Как правило, такие высыпания имеют место вблизи верхнего предела значений L для области захваченных энергичных электронов, однако, заведомо в пределах внешней границы захвата, связанной с переходом в область незамкнутых геомагнитных силовых линий полярной шапки. Такие события сильно преобладают на ночной стороне в пределах интервала широт, характерного для овала полярных сияний (рис 2) (1). Это согласуется с процессом паразитного рассеяния высокоэнергичных электронов, которые переносятся градиентным дрейфом в зону постоянно существующей сильной турбулентности, связанной с ионными модами, на широтах ночного сектора овала полярных сияний. Смещение к экватору области высыпаний релятивистских электронов во время возмущений согласуется с установленным смещением овала полярных сияний во время суббурь.
Итак, осаждение энергичных электронов в атмосферу может быть как основным источником ионизации области D , так и привести к образованию добавочного количества молекул водорода и азота, которые, как известно, могут выполнять роль разрушающих озон катализаторов на высотах средней атмосферы. В результате возрастания количества водорода чрезвычайно жесткие по энергиям и интенсивные ВРЭ, описанные выше, могут привести к локальному уменьшению озона (~30 %) в мезосфере на субавроральных широтах. При наблюдаемой 5 – 10 % частоте появлений подобные события становятся также основным источником в течение года окиси азота в субавроральной мезосфере, и их воздействие может быть существенным даже в верхней стратосфере. Более того, поскольку наш анализ данных спутника ограничен небольшим числом типов событий, характеризующихся наличием режима сильной диффузии в высыпании релятивистских (> 230 кэВ) частиц, приведенные выше оценки сопутствующих атмосферных эффектов является весьма умеренными. События в режиме слабой диффузии, а также события с участием электронов меньших энергий, происходят гораздо чаще, и становятся существенными эффекты постепенного накопления. Реальность этого предположения подтверждена экспериментами.
(Основным источником энергии ионизации D слоя ионосферы являются энергичные частицы: электроны и протоны.)
(Здесь будут рассмотрены воздействие высокоэнергичных частиц, высыпающихся из магнитосферы, и ионосферы в кинетическом рассмотрении, т.е. без учета плазменных волн или колебаний магнитной силовой трубки.)
Взаимодействие между магнитосферой и ионосферой происходит по двум каналам, один из которых можно назвать корпускулярным, связанный с вторжением энергичных частиц, а другой – волновым, осуществляющим передачу электрических полей и продольных токов. Сначала рассмотрим первый.
Некоторое количество протонов и электронов, захваченных на силовой линии геомагнитного поля, будут иметь зеркальные точки в атмосфере на высоте не менее 100 км. Проникающие в атмосферу частицы сталкиваются с атомами и молекулами атмосферы и постепенно отдают свою энергию нейтральным атомам и молекулам. Главным стоком энергичных заряженных частиц магнитосферы является атмосфера, по крайней мере, в области, характеризующейся высокими значениями L (например, L>5).
Заряженные частицы при вторжении испытывают ряд упругих и неупругих столкновений с атомами и молекулами атмосферы. Они постепенно расходуют свою энергию: а) на ионизацию и возбуждение нейтральных частиц воздуха и б) на излучение энергии при ускорении в кулоновском поле атомных ядер (тормозное рентгеновское излучение). Для частиц низких энергий (т.е. электронов с энергиями <1 МэВ) второй процесс потери энергии несущественен, но его эффект весьма важен , поскольку при этом процессе генерируются рентгеновские лучи, которые можно использовать для косвенных исследований энергичных частиц.
Следствия процесса ионизации и возбуждения в верхней атмосфере можно исследовать по изменениям диэлектрической постоянной верхней атмосферы и оптических излучений из этих областей. Наблюдались оптические полярные сияния, для возбуждения которых необходима энергия, превосходящая общую энергию всех энергичных электронов, запасённых во всей магнитосфере. Это доказывает, помимо всего прочего, эффективность атмосферы как стока для энергичных частиц.
Чтобы количественно исследовать влияние столкновений частиц на различные явления в верхней атмосфере, необходимо знать, как происходит в верхней атмосфере диссипация энергии частиц. Кроме того, детальное влияние морфологии нерегулярной, вызванной частицами ионизации в верхней атмосфере может способствовать лучшему пониманию временных вариаций потоков частиц.
Примерная глубина проникновения протонов и электронов различных энергий представлена на рис. 3 (2), поскольку высыпание частиц – процесс статистический, фактическая глубина проникновения не постоянна для всех частиц с одинаковыми начальными условиями. Значения, приведённые на рис. 3 (2), следует, таким образом, рассматривать как средние высоты на которых большая часть энергии поглощается при неупругих столкновениях в предположении, что частицы проникают в атмосферу вертикально.
Поскольку глубина проникновения в значительной степени зависит от энергии (рис. 3) (2), различные участки энергетического спектра частиц влияют на различные слои атмосферы. Только электроны и протоны с энергиями более 10 кэВ и 200 кэВ соответственно могут проникнуть ниже 100 км и ионизировать область D, а ионизация области F может вызываться только частицами с энергиями сотни эВ.
Статистически энергетический спектр электронов и протонов с возрастанием широты становится мягче. Поэтому следует ожидать, что вклад вторгающихся частиц в ионизацию имеет место в полярных областях на большей высоте, чем в средних широтах. Высыпание частиц в средних широтах влияет, по-видимому, только на область D . В зоне полярных сияний ионизация областей D и F до некоторой степени поддерживается частицами, тогда как внутри полярных шапок вторгающиеся частицы в нормальных условиях, по-видимому, ионизируют только верхнюю часть ионосферы. Спорадическая ионизация может изменять эту картину, особенно в полярных областях, где высокоэнергичные протоны солнечного происхождения временами вызывают значительное усиление ионизация в нижней части области D.
2.1. Электроны.
2.1.1. Потеря энергии и рассеяние. Энергичный электрон, проникающий в верхнюю атмосферу, в результате неупругих столкновений с молекулами воздуха постепенно теряет свою энергию W . Средняя потеря энергии на одно неупругое столкновение составляет для энергичных электронов (т.е. W>500 эВ)
около 90 эВ. Эта энергия сообщается связанному электрону, который оторвется от исходного атома с энергией, достаточно высокой, чтобы ионизовать еще два атома.