(3.20)
где = 1,4 - индекс, означающий соответственно отношение функцио-
нальной, параметрической, эксплуатационной и технологической сов-
местимости; - номер сопряжения в структуре; = 1,2 - ин-
декс, означающий, соответственно: качественную или параметрическую
совместимость.
Вместе с тем возможна ситуация, когда по формулам (3.15) или
(3.18) выявляется несовместимость входных и выходных параметров
свойств сопрягаемых структурных элементов ВКА. В этом случае необ-
ходимо включение вспомогательного функционального элемента, сог-
ласующего эти параметры, что формально может быть представлено
следующим образом:
(3.21)
где - предикат, означающий отношение " = " между значениями па-
раметров.
Выражение (3.21) позволяет сформировать множество рациональ-
ных структур ВКА, включающих как основные, так и вспомогатель-
ные ФМ. В структуре ВКА такими вспомогательными ФМ являются меха-
- 90 -
низм преобразования движения ( ) и механизм перемещения и герме-
тизации уплотнительного диска ( ), согласующие входные и выход-
ные параметры движения основных ФМ.
Обозначив через = 1,6 в (3.20) соответственно отношения
совместимости между ФМ ( ), ( ), ( ), ( ),
( ), ( ), процедуру генерации типовых рациональных
структур ВКА можно описать следующими выражениями:
(3.22)
где , , - соответственно: -ый вариант привода, -ый
вариант ввода движения в вакуум, -ый вариант уплотнительной па-
ры.
Выражение (3.22) описывает множество строго определенных эле-
ментных структур ВКА, состоящих из основных ФМ: привода, ввода
движения в вакуум и уплотнительной пары.
При невыполнении хотя бы одного из отношений совмести-
мости для ФМ и , т.е. , где -
значение "ложь", необходим ввод элемента и выражение (3.22)
принимает вид:
(3.23)
где - -ый вариант механизма преобразования движения.
При
(3.24)
где - -ый вариант механизма перемещения и герметизации уп-
лотнительного диска.
- 91 -
При и
(3.25)
Следует отметить, что при генерации вариантов элементных
структур ВКА может использоваться как одна какая-либо из описанных
формула, так по мере необходимости и несколько. При этом количест-
во получаемых структур определяется мощностями множеств . Кроме
того, появление новых ФМ, реализующих заданные цели проектирова-
ния, может в соответствии с (3.21) потребовать введения и новых
вспомогательных ФМ, а возможно и дополнительных к ним элементов с
рассмотрением отношений их совместимости и трансформацией соот-
ветствующих выражений.
Исключение из рассмотрения ФМ "корпус" - объясняется принятой
априори его совместимостью с другими ФМ.
Для выбора оптимальной элементной структуры может быть
использован интегральный критерий (2.19).
С целью упорядочения генерируемых структур для их анализа це-
лесообразно проводить ранжирование полученных структур. В качестве
критериев ранжирования предлагаются следующие:
(3.26)
где - количество структурных составляющих в структуре ВКА.
(3.27)
где - относительная стоимость сгенерированной структуры; -
относительная стоимость -го варианта -го варианта -го струк-
турного элемента ( ).
Для сверхвысоковакуумной ВКА в первую очередь предпочтитель-
нее структуры с отсутствием механизмов, работающих в вакуумной по-
лости, т.е. механизмов перемещения и герметизации уплотнительного
- 92 -
диска ( ), поэтому при анализе в первую очередь следует
рассматривать структуры, полученные с использованием выражений
(3.22) и (3.23).
- 112 -
влияния на динамические характеристики ВКА: перегрузки на уплотни-
тельной паре, скорость приложения усилия герметизации, быстро-
действие. Все искомые параметры связаны с перемещением уплотни-
тельного диска, в частности зависят от приведенного максимального
угла его "выбега":
(3.58)
где - фактический угол останова выходного звена привода; -
требуемый угол останова выходного звена привода (окончание цикла
работы ВКА), поэтому результирующая информация представлена в виде
зависимостей от перечисленных характеристик структуры ВКА:
на рис. 3.6,а приведена усредненная зависимость ; на
рис. 3.6,б - график ; на рис. 3.7,а - ; на
рис. 3.7,б - .
В связи с тем, что надежность работы ВКА во многом определя-
ется действующими на ее элементы усилиями, необходимо уменьшение
перегрузок на уплотнительную пару, определяемое минимизаци-
ей ( ). Для достижения этого, помимо изменения парамет-
ров структуры ВКА целесообразно ввести параметр - угол опережения
отключения привода:
(3.59)
где - фазовый угол, характеризующий момент отключения двига-
теля.
Зависимость представлена на рис. 3.8.
Анализ результатов моделирования функционирования ВКА позво-
лил выделить следующие возможные пути уменьшения перегрузок на уп-
лотнительную пару при определенной жесткости уплотнения: уменьше-
ние мощности двигателя; уменьшение к.п.д. механизмов ВКА после от-
ключения двигателя; увеличение передаточных функций применяемых
механизмов; введение угла опережения отключения привода и исполь-
зование накопленной кинетической энергии для герметизации уплотни-
- 115 -
тельной пары.
С целью изучения влияния структуры ВКА на скорость приложе-
ния усилия герметизации ( ), была смоделирована конструкция ва-
куумного клапана КЭУн [54], гипотетически реализованная различными
типами механизмов при сохранении единого . Результаты исследо-
ваний в виде зависимости приведены на рис. 3.9.
Как следует из данного графика, наименьшее значение на
стадии герметизации у конструкции с механизмом переменной структу-
ры, затем - совмещенной структуры, а худшее значение у меха-
низма непосредственного действия, что хорошо согласуется с резуль-
татами проведенного ранее кинематического анализа, и, следователь-
но, выведенный в п. 3.4.2 критерий Ф, обобщенный вид которого при-
веден в выражениях (2.21,2.22), оценивает не только кинемати-
ческие, но и динамические характеристики ВКА и его минимизация ве-
дет к их улучшению, поэтому критерий Ф является интегральным кри-
терием качества ВКА (обобщенным критерием) [127].
Помимо проверки работоспособности и оценки свойств синтезиру-
емых конструкций ВКА подобный подход к моделированию функциониро-
вания ВКА, основанный на решении уравнения (2.18), обеспечивает
нахождение рациональной совокупности перечисленных параметров ФМ
ВКА путем их перебора, т.е. позволяет определить желательные зна-
чения параметров структурных составляющих ВКА, что является необ-
ходимым условием синтеза элементных структур ВКА и оптимизации
конструкции при функционально-схемотехническом проектировании.
Выводы.
1. Предложена обобщенная модель функционально-схемотехни-
ческого проектирования ВКА, предоставляющая конструктору упорядо-
ченную последовательность действий, необходимых для выбора страте-
- 117 -
гии при создании ВКА.
2. Разработана методика и математическая модель параметри-
ческого анализа конструкций ВКА, позволяющая выявлять необходи-
мость модернизации конструкций и проводить их оценку.
3. Разработана методика функционально-схемотехнического про-
ектирования ВКА, позволяющая генерировать и находить удовлетворяю-
щие ТЗ технические решения ВКА. Предложены правила генерации, пре-
образования и выбора структур ВКА и проведена формализация про-
цесса ее структурного синтеза.
4. Предложена методика синтеза ФПД ВКА как этапа ее функцио-
нального проектирования, позволяющая разрабатывать функциональную
структуру ВКА тогда, когда разработка ее элементной структуры на
основе известных функциональных структур не удовлетворяет требова-
ниям ТЗ.
5. Показана важность синтеза механизмов при проектировании
ВКА. Выделена группа классификационных признаков, имеющих опреде-
ляющее значение для их синтеза, произведена систематизация струк-
тур ВКА применительно к механизмам и представлено их описание на
введенном предметно-ориентированном языке схемотехнического проек-
тирования. Предложены пути синтеза кинематических схем механизмов
ВКА.
6. Проведен кинематический анализ механизмов ВКА, на основа-
нии которого обоснованы и выведены критерии оптимальности ВКА.
7. Произведен анализ процесса функционирования ВКА на основе
его моделирования. Изучено влияние параметров структурных состав-
ляющих на динамические свойства ВКА, позволившее сформулировать
возможные пути улучшения показателей качества ВКА. Отмечена важ-
ность моделирования функционирования ВКА при ее схемотехническом
проектировании.
.
- 118 -
4. СОЗДАНИЕ НОВЫХ КОНСТРУКЦИЙ ВКА НА БАЗЕ АВТОМАТИЗАЦИИ СХЕ-
МОТЕХНИЧЕСКОГО И ФУНКЦИОНАЛЬНОГО ПРОЕКТИРОВАНИЯ
Исследования, проведенные во второй и третьей главах настоя-
щей работы, показали неизбежность использования средств вычисли-
тельной техники для решения задач функционального и схемотехни-
ческого проектирования ВКА вследствие их сложности и больших раз-
мерностей при необходимости охвата всех возможных вариантов синте-
зируемых решений, а также для исключения субъективизма при прове-
дении оптимизации ВКА.
4.1. Программные средства анализа существующих конструкций
ВКА.
Созданные программные средства реализуют разработанную инва-
риантную [142] методику параметрического анализа ВКА (п.3.2), а
также метод выбора типа структурных составляющих ВКА (п.3.3) и
представляют собой три программых модуля "WYBOR", "VTIP", "OPTIM".
Программный модуль "WYBOR", построенный по функционально- мо-
дульному принципу, обеспечивает проведение параметрического анали-