Экспериментальные результаты приведены в соответствующем разделе.
.
1.6. Спектральное оценивание по методу минимума дисперсии.
Оценка спектральной плотности мощности по методу минимума дисперсии не является
истинной функцией СПМ, поскольку площадь под графиком МД-оценки не характеризует полную мощность измеряемого процесса. Обратное преобразование Фурье, соответствующее МД-оценке, также не совпадает с автокорреляционной последовательностью. Таким образом, МД-оценку можно считать спектральной оценкой в том смысле, что она описывает относительные интенсивности компонент частотного спектра, но не является оценкой истинной СПМ. Минимальная дисперсия - это характеристика, которая более информативна вблизи начала координат оценки. Она получается посредством минимизации дисперсии процесса на выходе узкополосного фильтра, частотная характеристика которого адаптируется к спектральным компонентам входного процесса на каждой представляющей интерес частоте.
Рассмотрим фильтр с p+1 коэффициентами
. Выход этого фильтра, соответствующий входу , определяется сверткой:Дисперсия на выходе рассматриваемого фильтра определяется выражением :
Коэффициенты фильтра необходимо выбирать таким образом, чтобы на частоте
частотная характеристика этого фильтра имела единичный коэффициент усиления. Это ограничение можно записать следующим образом: , гдеОтсюда следует, что синусоида с частотой
, поданная на вход такого фильтра, пройдет без искажений. Для режекции компонент спектра, удаленных от частоты , необходимо минимизировать дисперсию на выходе рассматриваемого фильтра при последнем ограничении. То есть рассматривается задача условной минимизации:Несложно показать, что при таком ограничении решение по методу минимума дисперсии для коэффициентов фильтра будет удовлетворять уравнению:
Само значение дисперсии:
Отсюда получается выражение для спектральной оценки минимальной дисперсии:
Экспериментальные результаты приведены в соответствующем разделе.
1.7. Методы оценивания частоты, основанные на анализе собственных значений.
1.7.1. Введение
Ключевой операцией в методах, основанных на анализе собственных значений, является разделение информации, содержащейся в автокорреляционной матрице или матрице данных, на два векторных подпространства - подпространство сигнала и подпространство шума. В этих подпространствах можно определять различные функции от векторов сигнала и шума для получения оценок частоты. Однако эти оценки не сохраняют мощность анализируемого процесса и, следовательно, не являются оценками истинной СПМ. Далее будет рассмотрен метод классификации множественных сигналов.
Основная формула практически всех методов оценивания частоты, основанных на анализе собственных значений имеет следующий вид:
, здесь - собственные значения автокорреляционной матрицы, упорядоченные по степени их убывания; главные собственные вектора ( ), соответствующие собственным значениям .На собственные векторы натянуто подпространство шума матрицы и всем им соответствует одно и то же собственное значение . На главные собственные векторы натянуто подпространство сигнала матрицы .Разложение автокорреляционной матрицы на собственные значения можно двумя способами использовать для получения спектральных оценок или, точнее говоря, улучшенных процедур оценок частоты. Сохранение одной лишь информации, соответствующей собственным векторам пространства сигнала, то есть формирование для матриц
аппроксимации пониженного порядка, эффективно способствует увеличению отношения сигнал/шум, поскольку устраняет вклад мощности компонент подпространства шума. Этот факт лежит в основе процедур оценок частоты главных компонент (подпространства сигнала). Свойство инвариантных прямых подпространств (подпространств шума и сигнала) положено в основу процедур оценок частоты в подпространстве шума.1.7.2.Процедуры оценки частоты в пространстве сигнала.
1.7.3.Оценки частоты в пространстве шума.
Глава 2. Экспериментальный анализ алгоритмов спектрального анализа.
В данной работе математическое моделирование и вычислительные эксперименты преследовали следующие задачи:
1.) Провести сравнительный анализ численных методов спектрального анализа на различных типах тестовых сигналах.
2.) Выявить особенности каждого из методов и на их основе сделать вывод о целесообразности применения того или иного алгоритма в следующих условиях вычислительного эксперимента:
2.0.) Тест-сигнал состоит из смеси комплексных синусоид и шумовых процессов (белых шумов, пропущенных через фильтры с частотными характеристиками типа приподнятого косинуса) (используем для проверки способности метода к сохранению «достоверности» формы спектра)
2.1.) Несколько комплексных синусоид, присутствующие в анализируемом сигнале, имеют близкие частоты (этот тип тестовых сигналов используем для получения предельной разрешающей способности по частоте)
2.2.) В сигнале присутствуют слабые синусоидальные составляющие на фоне сильных шумовых процессов (анализируем способность спектральных оценок обеспечивать обнаружение слабых компонент сигнала).
2.3.) Проводим серию испытаний с одним методом и формируем при этом различные реализации процесса (здесь анализируем качество оценки СПМ, рассматриваемое как функция дисперсии оценки, зависящая от частоты; меньшим значениям функции соответствует лучшая оценка на заданной частоте). Здесь же вводится в рассмотрение равномерный критерий оценки качества получаемых оценок СПМ и на основе его делается вывод о наилучшем методе в рамках своего класса и, вообще, о лучшем из всех исследованных в рамках данной работы.
2.4.) Для вычислительных схем функционирующих в реальном масштабе времени проводим серию экспериментов, направленных на выявление влияния значений параметров на структурную устойчивость алгоритма.
2.5.) Серия экспериментов, направленных на решение вопроса о выборе значений параметров в параметрических методах оценки СПМ (выбор порядка в авторегрессионном методе и методе авторегрессии-скользящего среднего, а также порядок модели линейного предсказания в ковариационном методе; шаг адаптации в адаптивном авторегрессионном алгоритме; действительный весовой множитель в рекурсивном алгоритме наименьших квадратов; количество главных собственных векторов, отвечающих подпространству сигнала в методе, основанном на собственных значениях; тип окна в классических методах спектрального анализа).
Сохранение «достоверности» формы спектра - одно из свойств, которое присуще практически всем исследованным методам. Однако меру «достоверности» сложно определить аналитически и затем количественно для каждого из методов, поэтому «достоверность» относится к числу субъективных критериев качества получаемых оценок и основным подходом к сравнению алгоритмов является визуальное сравнение получаемых оценок с истинным априорно известным спектром тест-сигнала. Результаты сравнения полученных каждым из исследованных методов оценок приведены в приложении C.